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Epidemic State Estimation

* During an epidemic, the true number of
infectious people at any time is unknown.

* Lack of adequate testing
* Mild symptoms go unreported

* Misdiagnoses 2 0]

e Can we develop a method to estimate the
true number of infections in an ongoing s
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Standard Approach: Bayes Filtering

* Let y; be the unobserved true state of a dynamical system at time t.

* Since we can’t observe it, we would like to maintain a belief state that
integrates our prior estimate, y;_1, and an observation, o;.

* A belief state is a posterior distribution over y;. It is generated in two
steps:
+ Prediction: b(y;) = | p(elye-)b(Ve-1)dye-1.
* Correction: b(y;) = up(ocly) b(ye).

Note that, in this formulation, we don’t A
control the observation process.

b (v bifBed)
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Testing During Epidemics

* Common approaches include targeted

testing and contact tracing. Biased in various

* Prevalence testing is done in controlled ™ yunknown ways
settings

* E.g., military bases, universities

* Prevalence testing of the general
population is expensive.

 |f we do this, we would like to do as little of it
as possible.
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From Filtering to Active Sensing

* Our idea is to use a filtering approach, but to control the observation
process.

* We would like to use a small number of tests, allocated adaptively, to
generate a good estimate of the true number of infections.

Yt = [Yot, Y16 -» YN t]: True proportions of infectious people at time t.
X¢ = [Xo,¢) X1t -, Xy ¢]: Our estimate of y,.
n, = [no,t, Nyt ...,nN,t], 1 < n; < M: Numbers of tests assigned at time ¢.

Intuition: Minimize R(t) = |y; — x;| + n;
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Problem Formulation

Yt = [Yot, Y16 -» YN t]: True proportions of infectious people at time t.
X¢ = [Xo,¢) X1t -, Xy ¢]: Our estimate of y,.

n, = [no,t»nu» ...,nN,t], 1 < n; ¢ < M: Numbers of tests assigned at time ¢.
Intuition: Minimize R(t) = |y; — x| + n;

Xt+1 Xi42

Estimator/

However, y; is never observed. We only Estimator/
Controller Controller
observe test results. Neyq Zip1 N¢yo

Environment: n; — z;

We change our objective function to, The estimator/controller generates both the estimate of the

r(t) = |z, — x,| + n|n true numbe.r of infections a.nd the numbers of tests to assign
to each region in the next timestep.
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Learning Model

Xt+1 Xti2
* A particle filter maintains the belief state as a
. . i . . Ngyq Zty41 Ngyo
collection of particles, {y }t, with associated

weights, {Wi}t. In a PF-RNN these are
maintained internally.

* During training, the PF-RNN learns the e rﬁ?’ B
. . ~ S . .
transition model and the observation model. ~ “ﬂfﬁ, ' K particles

* We can also augment the objective function e g
with the entropy of the belief state to ( ) 5 stochastic
ayesian update

minimize uncertainty in the estimate.
input—b( PF-RNN )—» output

r(t) = |z, — x| + ning| + H(hy)
Fig. 1 from Ma et al., AAAI 2020.

Particle Filter Recurrent Neural Networks,
Xiao Ma, Peter Karkus, David Hsu, Wee Sun Lee,
Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 5101-5108, 2020.
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Approach

* Use a detailed data-driven ABM to train the model.
* The ABM uses a synthetic population of Virginia for realism.
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== [ JNIVERSITY | p; . ) o Generating a Synthetic Population of the United States
BIE oV TRGINIA | Biocomplexity Institute & Initiacive Adiga et al., Network Dynamics and Simulation Science Laboratory, Tech Report NDSSL 15-009, Jan 2015.
https://nssac.bii.virginia.edu/~swarup/papers/US-pop-generation.pdf



The Agent-based Model: EpiHiper

 Works on a labeled, time-
varying social contact network
derived from the synthetic
population.

e Takes duration of contact into
account when computing

infections.

* Highly parallel, runs on a large
cluster.

* Can implement several kinds of
Interventions.
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Disease model, age-stratified:
* Preschool: 0 —4 years

e Students: 5—17 years

e Adults: 18 — 49 years

e Older Adults: 50 — 64 years
* Seniors: 65+ years

Scalable epidemiological workflows to support COVID-19 planning and response.

D. Machi, P. Bhattacharya, S. Hoops, J. Chen, H. Mortveit, S. Venkatramanan, B. Lewis, M. Wilson, A. Fadikar, T. Maiden, C.L. Barrett, M. V. Marathe,

Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS) 2021 (pp. 639-650).



Training Data

Epidemic Trajectories of 12 Virginia Counties

* We generated 10,000 epidemic
trajectories for all of Virginia

and selected 12 contiguous ranover

counties for training the model. New Kent

L] ] [} L] o e Pﬂwatan

* Multiple unique transmissibility  rctmone

values in the range E::”C't:

[0.025,0.095], 50 trajectories Amelia

per transmissibility value. ortorey

* Each trajectory is of length 180 I
d ayS . EID 4ID GID EID lE;IID lEID lf-ll{}
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Experiments

* No action: 5 tests assigned to each county.

* With action: The neural network has to generate both the estimate of
the epidemic state at time t and the number of cases to assign to
each region intime step t + 1.

* No entropy: This is the same as the previous case, but without the
term for the variance of the set of particles in the objective function.

* Multi-trajectory: In this case, training was done on a multiple
trajectories with transmissibility rates in the range of [0.025 - 0.095]
and evaluation was conducted on a trajectory with an unseen
transmissibility value within this range.
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Results
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Thank you!

Samarth Swarup
University of Virginia
swarup@virginia.edu
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