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Epidemic State Estimation

https://covid19-projections.com/

• During an epidemic, the true number of 
infectious people at any time is unknown.
• Lack of adequate testing

• Mild symptoms go unreported

• Misdiagnoses

• Can we develop a method to estimate the 
true number of infections in an ongoing 
epidemic?



Standard Approach: Bayes Filtering

• Let 𝑦𝑡 be the unobserved true state of a dynamical system at time 𝑡.

• Since we can’t observe it, we would like to maintain a belief state that 
integrates our prior estimate, 𝑦𝑡−1, and an observation, 𝑜𝑡. 

• A belief state is a posterior distribution over 𝑦𝑡. It is generated in two 
steps:
• Prediction: ෠𝑏 𝑦𝑡 = ∫ 𝑝 𝑦𝑡 𝑦𝑡−1 𝑏 𝑦𝑡−1 𝑑𝑦𝑡−1.

• Correction: 𝑏 𝑦𝑡 = 𝜇𝑝 𝑜𝑡 𝑦𝑡 ෠𝑏(𝑦𝑡).

𝑏(𝑦𝑡−1)෠𝑏(𝑦𝑡)𝑏(𝑦𝑡)

Note that, in this formulation, we don’t 
control the observation process.



Testing During Epidemics

• Common approaches include targeted 
testing and contact tracing.

• Prevalence testing is done in controlled 
settings
• E.g., military bases, universities

• Prevalence testing of the general 
population is expensive.
• If we do this, we would like to do as little of it 

as possible.

baycare.org

Biased in various 
unknown ways



From Filtering to Active Sensing

• Our idea is to use a filtering approach, but to control the observation 
process.

• We would like to use a small number of tests, allocated adaptively, to 
generate a good estimate of the true number of infections.

𝒚𝑡 = [𝑦0,𝑡, 𝑦1,𝑡, … , 𝑦𝑁,𝑡]: True proportions of infectious people at time 𝑡.
𝒙𝑡 = [𝑥0,𝑡, 𝑥1,𝑡, … , 𝑥𝑁,𝑡]: Our estimate of 𝒚𝑡.

𝒏𝑡 = 𝑛0,𝑡, 𝑛1,𝑡, … , 𝑛𝑁,𝑡 , 1 ≤ 𝑛𝑖,𝑡 ≤ 𝑀: Numbers of tests assigned at time 𝑡.

Intuition: Minimize 𝑅 𝑡 = 𝒚𝑡 − 𝒙𝑡 + 𝒏𝑡



Problem Formulation
𝒚𝑡 = [𝑦0,𝑡, 𝑦1,𝑡, … , 𝑦𝑁,𝑡]: True proportions of infectious people at time 𝑡.
𝒙𝑡 = [𝑥0,𝑡, 𝑥1,𝑡, … , 𝑥𝑁,𝑡]: Our estimate of 𝒚𝑡.

𝒏𝑡 = 𝑛0,𝑡, 𝑛1,𝑡, … , 𝑛𝑁,𝑡 , 1 ≤ 𝑛𝑖,𝑡 ≤ 𝑀: Numbers of tests assigned at time 𝑡.

Intuition: Minimize 𝑅 𝑡 = 𝒚𝑡 − 𝒙𝑡 + 𝒏𝑡

However, 𝒚𝑡 is never observed. We only 
observe test results.

Estimator/
Controller

Estimator/
Controller

𝐸𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡: 𝒏𝑡 → 𝒛𝑡

We change our objective function to,

𝑟 𝑡 = 𝒛𝑡 − 𝒙𝑡 + 𝜂 𝒏𝑡

The estimator/controller generates both the estimate of the
true number of infections and the numbers of tests to assign 
to each region in the next timestep.



Learning Model

Fig. 1 from Ma et al., AAAI 2020.

Particle Filter Recurrent Neural Networks,

Xiao Ma, Peter Karkus, David Hsu, Wee Sun Lee,

Proceedings of the AAAI Conference on Artificial Intelligence, 34(04), 5101-5108, 2020.

• A particle filter maintains the belief state as a 

collection of particles, 𝑦𝑖
𝑡
, with associated 

weights, 𝑤𝑖
𝑡
. In a PF-RNN these are 

maintained internally.
• During training, the PF-RNN learns the 

transition model and the observation model.
• We can also augment the objective function 

with the entropy of the belief state to 
minimize uncertainty in the estimate.

𝑟 𝑡 = 𝒛𝑡 − 𝒙𝑡 + 𝜂 𝒏𝑡 + 𝐻(𝒉𝑡)



Approach

Generating a Synthetic Population of the United States

Adiga et al., Network Dynamics and Simulation Science Laboratory, Tech Report NDSSL 15-009, Jan 2015.
https://nssac.bii.virginia.edu/~swarup/papers/US-pop-generation.pdf

• Use a detailed data-driven ABM to train the model.

• The ABM uses a synthetic population of Virginia for realism.



The Agent-based Model: EpiHiper

• Works on a labeled, time-
varying social contact network 
derived from the synthetic 
population.

• Takes duration of contact into 
account when computing 
infections.

• Highly parallel, runs on a large 
cluster.

• Can implement several kinds of 
interventions.

Scalable epidemiological workflows to support COVID-19 planning and response. 
D. Machi, P. Bhattacharya, S. Hoops, J. Chen, H. Mortveit, S. Venkatramanan, B. Lewis, M. Wilson, A. Fadikar, T. Maiden, C.L. Barrett, M. V. Marathe,

Proceedings of the IEEE International Parallel and Distributed Processing Symposium (IPDPS) 2021 (pp. 639-650). 

Disease model, age-stratified:
• Preschool: 0 – 4 years
• Students: 5 – 17 years
• Adults: 18 – 49 years
• Older Adults: 50 – 64 years
• Seniors: 65+ years



Training Data

• We generated 10,000 epidemic 
trajectories for all of Virginia 
and selected 12 contiguous 
counties for training the model.

• Multiple unique transmissibility 
values in the range 
[0.025,0.095], 50 trajectories 
per transmissibility value. 

• Each trajectory is of length 180 
days.



Experiments

• No action: 5 tests assigned to each county.

• With action: The neural network has to generate both the estimate of 
the epidemic state at time t and the number of cases to assign to 
each region in time step t + 1. 

• No entropy: This is the same as the previous case, but without the 
term for the variance of the set of particles in the objective function. 

• Multi-trajectory: In this case, training was done on a multiple 
trajectories with transmissibility rates in the range of [0.025 − 0.095] 
and evaluation was conducted on a trajectory with an unseen 
transmissibility value within this range. 



Results

Error without the model
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