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Abstract. The airport terminals are complex sociotechnical systems, which are 
difficult to understand and their behavior is hard to predict. Hence, an agent-
based model, the Agent-based Airport Terminal Operation Model (AATOM), has 
been designed to represent and analyze diverse airport terminal processes, actors, 
their behavior and interactions. The main issue with such models is the large 
computational requirements for simulating detailed processes, making it compu-
tationally inefficient. Furthermore, the dynamics of such models are difficult to 
understand. Therefore, the goal of this research is to approximate the dynamics 
of AATOM by a surrogate model, while preserving the important system prop-
erties. A methodology is suggested for training and validating a surrogate model, 
based on the Random Forest algorithm. The trained surrogate model is capable 
of approximating the AATOM simulation and identifying relative importance of 
the model variables with respect to the model outputs. Firstly, the results obtained 
contain an evaluation of the surrogate model accuracy performance, indicating 
that the surrogate model can achieve an average accuracy of 93% in comparison 
to the original agent-based simulation model. Nonetheless, one indicator, the 
number of missed flights, has shown to be more difficult to predict, with an av-
erage accuracy of 83%. Secondly, the results show that the airport resource allo-
cation has an important impact on the efficiency of the airport terminal, with the 
two most important variables being the number of desks at the check-in and the 
number of lanes at the checkpoint. Last, the developed surrogate model was com-
pared with a second Artificial Neural Network-based surrogate model built for 
the same agent-based model.  
Keywords: Surrogate modeling, Agent-based model, Random forest. 

1 Introduction 

The airport terminal plays a crucial role in the modern air transportation system. Previ-
ous studies have focused on modelling and simulating the airport terminal operations, 
concentrating mainly on security analysis [1, 2]. For this purpose, An Agent-based Ter-
minal Operation Model (AATOM) has been developed for modelling and analysis of 
complex sociotechnical airport systems with diverse interacting actors. The emergent 
in such complex systems is hard to understand [3]. Furthermore, AATOM has a high 
computational complexity. One of the approaches to improve understanding of agent-
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based models is surrogate modeling. In essence, it consists of generating a ‘model of 
the model’, obtaining an approximation of the original model. Surrogate modeling is 
used through various domains with the objective to emulate/surrogate an existing agent-
based model [4]. Subsequently, the surrogate models are used for calibration [5], vali-
dation [6] or behavior space exploration [7].  
     Hence, two elements form the basis of the research, being the original AATOM 
model and surrogate modelling to abstract this model, to decrease its high computa-
tional complexity. Thus, the research objective is to obtain a computationally efficient 
AATOM while preserving the important dynamic (emergent) properties of the model 
and getting an insight into the underlying mechanisms of the model. The former under-
lines that by applying the surrogate modelling method (Random Forest) on the AATOM 
model, an approximation of the model can be obtained, preserving the system proper-
ties by accurately predicting the model output under given conditions. The latter is the 
ability of the approximation obtained from the original AATOM model to reveal the 
relations between the model inputs and outputs, leading to a better understanding of the 
system behavior. The main contributions of the study are the generation of a surrogate 
model from AATOM, the evaluation and validation of the surrogate model, and the 
comparison of the developed surrogate model (the Random Forest model) with another 
surrogate model (the ANN model) to gain better credibility in the obtained results. 
    In the following in this paper, background elements regarding AATOM and the sur-
rogate model used for approximation are given in Section 2. Furthermore, the method-
ology developed for generating the surrogate model based on the AATOM is described 
in Section 3. Section 4 presents the results obtained by applying the methodology, fo-
cusing on the performance of the surrogate model and the input-output relationships. 
Last, the conclusions are drawn in Section 5. 

2 Related Work 

The AATOM is an agent-based simulation model used to represent the dynamics of 
passengers and airport terminal staff in the context of airport terminal operations [2]. It 
comprises the agents with their properties, the environment and the interaction between 
the agents and the environment. The agent has a three-layered architecture, with each 
level adding a layer of abstraction. The three layers are: operational, tactical and stra-
tegical. In essence, the three-layered architecture dictates how the agent observes the 
environment and the other agents, and the way the agents interacts with both, based on 
the observations. Ultimately the agent is able to make decisions based on the beliefs 
about the environment and the other agents. For a more detailed description of the 
AATOM architecture we refer to [2]. The environment is composed of three objects: 
the areas, the flights and the physical objects. The first being two-dimensional polygons 
that delimit the different terminal areas (check-in, checkpoint, entrance, gate and facil-
ity).  
    Surrogate modeling is the approach for generating an approximation of the model in 
order to reduce its complexity while maintaining the dynamic properties of the original 
model. A surrogate model can be constructed by using a learning algorithm to obtain 
an abstraction of the model. This study considers two types of surrogate models. The 
first model is developed using the methodology described in Section 3. The second is 
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used for comparison purposes and a brief explanation of its elaboration is given. The 
algorithm chosen for generating the first surrogate model, is the Random Forest. This 
learning algorithm has been proven to be a reliable and efficient method for working 
with large data-sets, achieving low computational costs [8]. In addition, the implemen-
tation of the algorithm for surrogate modelling is relatively simple [9-11]. Furthermore, 
there are classification and regression trees, differing on the nature of the target varia-
ble, being qualitative or quantitative respectively. In this research only regression trees 
are considered as the AATOM output target variables are only continuous. The target 
variables, represent different airport terminal indicators measuring processing times or 
counting the passenger flux. In addition, the Random Forest method has a specific 
measure for ranking the different parameters on their relative importance, called the 
variable importance measure (VIM) [12]. Measuring the relative importance of the var-
iables can identify specific relations between the model variables and indicators. Giving 
additional insights into the underlying relationships of the original (AATOM) model 
[13]. The second model is based on Artificial Neural Network (ANN). The key moti-
vation to use ANN is the low computational cost and the capability of approximation. 
ANNs have good generalization properties, can deal with large datasets and are able to 
represent nonlinearity. However, vanishing gradient is the main problem of ANN in the 
back propagation. In order to measure the sensitivity of parameters, different algo-
rithms, mainly focusing on the connection weights in artificial neural networks, have 
been proposed. In [14] feature selection is described as ‘the problem of choosing as 
small subset of features that ideally is necessary and sufficient to describe the target 
concept’. The main issue with the previous algorithm [15] was that when the training 
finished, it naturally assumed that the higher the amount of weights, the more important 
a parameter while regularization techniques make weights to not increase and become 
smaller [16]. The method which we used to measure the relative importance of param-
eters is called variance-based feature importance [17]. This is based on the principle 
that the more important is a parameter, the morethe weights, which are connected to the 
corresponding input neurons, vary during the training of the model. To measure the 
relative importance of each parameter, variances of each weight connected to the input 
layer is calculated in the training time [18]. The algorithm that we used for computing 
these variances is an adaptation of Welford’s online algorithm [17] for computing these 
variances. 

3 Methodology 

A step-wise systematic iterative procedure is defined in order to obtain an accurate ap-
proximation of AATOM by surrogate modelling. The schematic representation is given 
in Figure 1. Configuring the AATOM model is the first step of the procedure. The well-
defined AATOM can subsequently be used for simulation in order to generate simula-
tion data for training and validating the surrogate model. The simulation data is pre-
processed with the result that the surrogate model can achieve better performance. It 
consists of defining the relevant parameter values and re-sampling the simulation data 
to better train the surrogate model. Pre-processing is performed after the first iteration 
of generating the surrogate model. The following step is training the Random Forest. 
The training data-set is provided from the simulation data of the second step. The 
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simulation data is randomly divided into two thirds for training data-set and one third 
for validation data-set [19]. The fifth step, the evaluation of the surrogate model, is 
subdivided into the validation of the surrogate model and a scenario-based evaluation. 
The last step is the comparison of the two surrogate models. 

 
Fig. 1. The schematic representation of the methodology for obtaining a trained surrogate 

model based on AATOM.                                   
The AATOM has a modular architecture, which requires a specific configuration for 
simulating airport terminal operations. In Figure 2, the chosen configuration for con-
ducting the surrogate model generation is visually represented. The model consists of 
a check-in and security checkpoint with each having a queuing system in place. More-
over, the gate area is included in the model. The defined model parameters and indica-
tors. Both are given in Table 1. The input parameters in Table 1 represents a one hour 
flight schedule, with the first time slot scheduled 400 seconds after the start of the hour 
and the last slot scheduled 3400 seconds after the start. Each slot is assigned either zero 
(if no flight is scheduled) or the number of passengers for the scheduled flight. Further-
more, regarding the output given in Table 1, both queuing time and throughput for se-
curity checkpoint and check-in are included. For both the training and validation data-
set, relatively large pool of sample points is drawn from simulation using the Latin 
Hypercube sampling method [20].  

 
Fig. 2. The AATOM layout including the check-in, security, and gate ([Janssen, 2020]). 

 
Table 1. The model input parameters and output, according to the AATOM architecture, cho-

sen for simulation purpose. 
Parameters Description Unit 
nlanes Number of lanes at the security check-point - 
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ndropoff Number of luggage drop-off points - 
ncollect Number of luggage collection points - 
ndesks Number of check-in desks   [s] 
slot400 Schedule slot at time 400 (sec)   [s] 
slot1000 Schedule slot at time 1000 (sec)   [s] 
slot1600 Schedule slot at time 1600 (sec)   [s] 
slot2200 Schedule slot at time 2200 (sec)   [s] 
slot2800 Schedule slot at time 2800 (sec)   [s] 
slot3400 Schedule slot at time 3400 (sec)   [s] 
Output   

scQueueavg Average security checkpoint queuing time    [s] 
checkinQueueavg Average check-in queuing time    [s] 
throughputcheckin Number of passengers that passed the check-in    [s] 
throughputsc Number of passengers that passed the checkpoint      - 
TimeToGateavg Average time to the gate    [s] 
nmissedFlights Number of missed flights      - 

The surrogate model, given a combination of input values, is required to predict the 
values of the output variables. However, the accuracy of the surrogate model may differ 
for the different target variables. It is possible that the surrogate is unable to achieve the 
validity criteria for one or multiple target variables. There exist different strategies for 
coping with it [21, 22]. The strategy used in this research is the utility-based regression 
and re-sampling approach. The training data points consist of value combination of 
inputs and outputs as defined in Table 1. For the Random Forest model, several hy-
perparameters need to be determined prior to the training such as the number of trees 
and the number of sample points drawn for each tree. For the purpose of the research, 
the Bayesian optimization algorithm has been chosen for tuning hyperparameters, 
proven to be reliable and efficiently applied in previous studies [25, 26].  
     Lastly, subsequent to training the surrogate model, validating the model is required. 
The output indicators of the AATOM on the validation set are compared with the out-
puts from the validation set using the Mean Absolute Percentage Error (MAPE). From 
literature [19], Random Forest surrogate models often achieve accuracies of more than 
90%. The scenario evaluation is based on a set of scenarios that represent real-world 
airport terminal cases that are given in Table 2. The scenario is a combination of a set 
of resources, related to the check-in a checkpoint, and a given (one hour) flight sched-
ule. Three different scenarios in Table 2 represents three different levels of passenger 
demand: low demand (LOW), medium demand (MED) and high demand (HIGH). The 
levels are based on a regular flight schedule at Rotterdam-The Hague Airport (RTHA). 
In each scenario, the fixed resource allocation is based on prior research analyzing 
check-in and checkpoint systems in the context of airport security [1, 27]. One security 
checkpoint lane has an approximate capability of 160 passenger per hour and one 
check-in desk is able to process on average 60 passengers per hour. The flight schedules 
are derived from the flight schedule of RTHA, having on a peak hour an average of six 
flights scheduled. The representation is an hour of time slots where the value indicates 
the number of passengers scheduled for that time slot (empty if no flight is scheduled). 
Moreover, the number of passengers correspond to the Boeing 737 and 738 that are 
common aircraft at RTHA.  
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Table 2. The set of scenarios for fixed resource allocation for the different flight schedules, 
with four resource variables (nlanes, ndrop, ncollect, ncheckin) and six time slots (from 400 to 3400). 

ID Resource Allocation Flight Schedule 

 nlanes ndrop ncollect ncheckin 400 1000 1600 2200 2800 3400 
LOW 3 3 3 7 186   186   
MED 5 3 3 12 197  142 197  164 
HIGH 7 3 3 19 186 197 186 142 197 197 

The methodology proposed for analyzing the sensitivity of the agent-based model using 
the surrogate neural network model, consists of two phases. In the first phase, the se-
curity checkpoint parameters of the AATOM are used as an input for the neural net-
work. The influence of each parameter’s uncertainty on the output uncertainty is deter-
mined through a series of forced perturbations on the parameters. The variation of the 
six parameters of interest, and in the second phase, the result of changes with respect 
to the variation of each parameter is considered for the output layer in the neural net-
work. The training and validation of the neural network for the prediction part are per-
formed, and eventually, the value of the weight from each input is considered as the 
importance of that parameter. To measure the sensitivity of each parameter such as 
average queue time in the security check-point, we have used the method proposed in 
[17].  
    The range of parameter values are based on standard values for RTHA are given in 
Table 3. The nflights are divided into time of scheduling and number of passengers. It can 
take the following values: [0, 142, 153, 164, 175, 186, 197]. Both time slots are com-
bined in an array, e.g. [[1600, 142], [3400, 142]]. The value ranges for the other param-
eters are determined by the limitation of the simulation model. 

Table 3. Value ranges of the AATOM parameters for training. 
AATOM parameter Range 

nlanes [1, 2, 3, 4, 5, 6, 7, 8] 
ndropoff [1, 2, 3] 
ncollect [1, 2, 3] 
ndesks [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12] 
nflights [1, 2, 3, 4, 5, 6] 

4 Results 

In this Section results are presented, using the methodology described in Section 3. The 
evaluation results comprise validation using simulation data and scenarios, with the 
evaluation given in Table 4. It contains the time performance and accuracy measure-
ments for both the Random Forest model and the ANN model. From Table 4, the Ran-
dom Forest model has a low training and execution time. Regarding the measured using 
MAPE accuracy, the overall performance of the Random Forest model is attaining val-
ues of 90% and above, with an average accuracy of 92.90%. Moreover, the most accu-
rate prediction, being the TimeToGate, is reaching 97.13%. It can be explained by con-
sidering that the TimeToGate is the indicator based on the most information contained 
in the simulation model. Nonetheless, the indicator for the number of missed flights is 
less accurately predicted, only achieving 83.44% accuracy.  
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Table 4. Comparison of performances between the Random Forest surrogate model and 
the Artificial Neural Network surrogate model. 

Performances indicator RF ANN 
Training time [sec] 3.82 12.54 
Execution time [sec] 0.12 0.91 
 Mean Absolute Percentage 
Error 

  

scQueueavg 96.02% 94.39% 

checkinQueueavg 91.66% 93.71% 
throughputcheckin 94.71% 91.29% 
throughputsc 94.44% 95.61% 
TimeToGateavg 97.13% 98.81% 
nmissedFlights 83.41% 80.12% 
Mean Accuracy 92.90% 93.87% 

Furthermore, comparing the Random Forest and ANN model, it can be seen that the 
ANN model is slower on both the training and execution time. However, the ANN 
model is still largely faster than the AATOM. On the accuracy, both models have sim-
ilar performances. The TimeToGate is also the most accurate prediction for the ANN 
model. Lastly, the same difference between the accuracy of the nmissedFlights and the other 
indicators is present in the ANN case, only reaching 80.12%. Successively, the second 
evaluation is given in Table 5. The accuracy of the surrogate model is given for each 
indicator at every level of passenger demand. First, the model has on overall poor per-
formance on the LOW scenario compared to the two other scenarios, with the largest 
differences on the accuracy for the two checkpoint indicators and the nmissedFlights. The 
most apparent reason is the lack of training data sampled around the region of the var-
iable values defined in the LOW scenario. The TimeToGate performance is a direct 
consequence of the poor performance on the checkpoint indicators, measuring the be-
havior. 

Table 5. The prediction for different scenarios from the trained RF surrogate model. 
ID checkinQueueavg scQueueavg Time-

ToGateavg 
nmissedFli

ghts 
through
putcheckin 

through
putsc 

LOW 89.13% 60.56% 80.01% 0% 94.1% 75.88% 
MED 93.58% 88.62% 92.64% 8.81% 92.82% 98.21% 
HIGH 88.17% 94.95% 95.38% 61.53% 91.45% 94.94% 

Furthermore, the surrogate model’s low accuracy on the nmissedFlights is also visible in the 
results of the two other scenarios. There is a visible increase in accuracy with increasing 
passenger demand, growing from 0% to 61.53%. Moreover, the surrogate model was 
trained on a wide range of cases with highly varying nmissedFlights values. Additional in-
sight is given into the underlying relationships between the parameters and indicators 
of the original model (the AATOM). The first analysis is the measure of importance of 
the different variables. The variable importance measure (VIM) is calculated for both 
surrogate models (Random Forest and ANN), given in Figure 3. As can be seen in Fig-
ure 3(a), there are two distinct variables, identified by VIM as the most important var-
iables: the number of lanes of the security checkpoint and the number of desks at the 
check-in. Both variables are regulating the processing capacity of passengers at the two 
systems (checkpoint and check-in), therefore the indication from the VIM conforms 
with the representation of the two variables in the airport terminal operations. 
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Moreover, from Figure 3(a), the four resource allocation variables (nlanes, ndropoff, ncollect, 
ndesks) are relatively more important than the flight schedule variables (time-slots). All 
indicators, except for the nmissedFlights, are measuring time performance through queueing 
or throughput. Hence, the resource allocation is more directly related to the time per-
formance of the terminal than the flight schedule, dictating the check-in and checkpoint 
behavior. The last observation in Figure 3(a) is the trend of the time-slot importance, 
with the first and last slot being the least important slots. Presumably, the importance 
of the middle slots stems from the effect of reducing the time between flights by adding 
more slots in the scheduling hour. The VIM of the ANN model is given in Figure 3(b) 
for comparison purposes with the RF model. Multiple similarities are perceivable be-
tween the two models, with the most recognizable that the same two most important 
variables (ndesks and nlanes) are identified with the VIM. Additionally, the resource allo-
cation variables are prominently more important than the flight time-slots. Besides, 
there are several differences between the RF model’s VIM and the ANN model’s VIM. 
First, the importance measure difference between the two most important variables is 
lower. The lower difference is possibly due to the use of a different surrogate model, 
hence both models are not using the variable information in exactly the same manner 
to make predictions on the different target variables. Second, the ranking of the collect 
and drop-off location variables is reversed. Nonetheless, the order of magnitude is sim-
ilar for both variables in both models. 

                 
(a) RF model                                                                        (b)    ANN model 

Fig. 3. The variable importance measure for the AATOM model parameters from the default 
RF and the ANN surrogate model 

Furthermore, an analysis of the surrogate model accuracy is given by systematically 
adding variables to the model. At each addition the predictions made by the surrogate 
model are compared with the validation data-set. The different mean accuracy levels 
obtained for both models are given in Table 6. Figure 4 visualizes the accuracy change 
by adding model variables. From Table 6 and Figure 4, it can be seen that the four 
resource variables are supporting the RF model to make predictions with an averaged 
accuracy of 86.82%. Adding the remaining variables increases the mean accuracy by 
6%. Hence, clearly observable in Figure 4, the resource allocation variables have the 
largest contribution to the increase in prediction accuracy of the surrogate model. For 
the RF model, there is the small reduction of accuracy after the addition of the first 
time-slot variable. However, the difference is sufficiently small (0.07%) to be ne-
glected. Furthermore, by comparing the RF and ANN model in Table 6, several simi-
larities can be observed. First, the resource variables are sufficient for the ANN model 
to reach an accuracy of 89.77 %. The remaining variables, similar to the RF model, are 
only slightly increasing the prediction accuracy by 4%. Second, the most important 
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variable is the ndesks, related to similar VIM. Nonetheless, there is an observable differ-
ence between the contribution of the time-slot variables in the RF model and the ANN 
model. The differences coincide with the VIM of the variables in Figure 3. As men-
tioned earlier, the nmissedFlights is the one target variable for which the surrogate model 
experiences difficulties to make accurate predictions. The accuracy is lower for the spe-
cific scenarios than for an evaluation based on the validation data. In essence, the nature 
of the nmissedFlights is different from all other indicators of the AATOM simulation. All 
other indicators are measuring the efficiency in time or passenger count of the check-
in and/or checkpoint. The nmissedFlights is not directly explained by the dynamics of either 
of the systems, i.e. check-in or security checkpoint. This target variable is more evenly 
dependent on all the operational elements in the airport terminal. This can be observed 
in the VIM for predicting the nmissedFlights and the incremental accuracy by variable ad-
dition, given in Figure 5. 

Table 6. The prediction for different scenarios from the trained RF surrogate model. 
ID Parameters Included Parame-

ters 
RF ANN 

1 nlanes [1] 62.53% 68.03% 
2 ndropoff [1,2] 65.50% 72.24% 
3 ncollect [1,2,3] 70.97% 76.91% 
4 ndesks [1,2,3,4] 86.82% 89.77% 
5 slot400 [1,2,3,4,5] 87.75% 90.01% 
1 slot1000 [1,2,3,4,5,6] 87.74% 90.80% 
2 slot1600 [1,2,3,4,5,6,7] 89.89% 92.26% 
3 slot2200 [1,2,3,4,5,6,7,8] 91.32% 92.89% 
4 slot2800 [1,2,3,4,5,6,7,8,9] 92.38% 93.15% 
5 slot3400 [1,2,3,4,5,6,7,8,9,10] 92.88% 93.76% 

According to Figure 5(a), the nlanes is the most important variable. The average time to 
check a passenger at a checkpoint lane is higher than for the check-in. Hence, the num-
ber of lanes present at the checkpoint largely determine the number of passengers that 
can arrive on time for the flight. Furthermore, from Figure 5(a), the importance of all 
remaining variables is approximately evenly distributed. Thus, it indicates the necessity 
of all variable information to achieve adequate accuracy (above 80%) on the validation 
data. The figure depicts the change in accuracy by step-wise addition of the variables. 
In contrast with the same plot from Figure 4, the accuracy is linearly increasing with 
every variable addition. 

 
Fig. 4. The model accuracy with addition of variables from the RF surrogate model. 
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(a) VIM                                                                   (b)   Accuracy 

Fig. 5. The variable importance and model accuracy with addition of variables from the RF sur-
rogate model for predicting the number of missed flights. 

Moreover, the surrogate model is predicting less accurately the smaller number of 
missed flights. The chosen measure for accuracy (MAPE) determines the absolute dif-
ferences between the prediction of the surrogate model and the simulation result. 
Hence, for smaller numbers of nmissedFlights the difference in percentage are larger, for 
example predicting 4 instead of 6 reveals an inaccuracy of 40%. Second, the number of 
missed flights occurring over the flight hour schedule is a rare event, especially rare for 
the lower values. The infrequent occurrence complicates the task of training and pre-
dicting this indicator. Last, the range of values for the nmissedFlights is wide, visualized in 
Figure 6. Hence, it is more complex for the surrogate model to achieve high accuracy 
on the whole spectrum. However, utility-based regression and the method for re-sam-
pling, did not improve the accuracy of the surrogate model. The method has been ap-
plied on re-sampling the data to under-sample the higher values of the number of missed 
flights.  

 
Fig. 6. Distribution of the nmissedFlihgts from the dataset, with the number of missed 

flights over the number of occurrences in the dataset. 

5 Discussion and Conclusion 

The research purpose was to study an approach for using an approximation of the 
AATOM in order to make predictions on the behavior of airport terminal operations in 
a computationally efficient manner. The study included two additional aspects: preserv-
ing the properties of the original model and getting an insight in the underlying 
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dynamics of the AATOM. The method consists of an iterative process in which the 
AATOM generates simulation data for training and validation of the surrogate model. 
The surrogate model used in the method is a random forest model. The trained surrogate 
model was evaluated based on the absolute difference between the model predictions 
and the simulations results from the validation data-set. An additional evaluation was 
made on specific scenarios for different levels of passenger demands. Furthermore, an 
additional surrogate model was developed for comparison, based on ANN. The ANN 
model is also evaluated on the validation data-set and provided additional insight on 
the underlying relationships in the AATOM. Regarding the approximation, the obtained 
the RF-based surrogate model is able to make accurate predictions on all indicators 
except one, the number of missed flights. It achieves an average accuracy of 93%. For 
the number of missed flights, the accuracy is reaching 83%. Further analysis highlights 
the wide range of number of missed flights simulated and the difficulty for the surrogate 
to make accurate predictions on the lower numbers. Moreover, the evaluation on the 
scenarios has shown the generalization capability of the surrogate model, with the same 
difficulty to make accurate predictions of the number of missed flights. The ANN 
model attains similar accuracy on all indicators and encounters the same issue with the 
predictions on the number of missed flights. In general, the results have shown through 
accuracy evaluation that the emergent properties, represented by the model indicators, 
are preserved by achieving acceptable accuracy levels. 
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