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Abstract. This paper reimplements and extends a prior agent-based
model of food web evolution. The earlier work attempted to replicate
the results achieved by a system dynamics model of food web evolution,
but failed to achieve the diversity or realistic dynamics of the system
dynamics approach. This work starts by adding spatial diversity to the
model, the lack of this being flagged as a potential problem in the original
work. This produced some improvement in the results (with more diverse
food webs being produced), but there were still patterns commonly found
in the resultant food webs that are uncommon in real-world food webs.
To further refine the model, a more complex representation of species
traits was added, and methods for classifying species based upon the
traits. In particular, an unsupervised learning clustering algorithm has
been introduced to classify species in the evolving food web. This has
resulted in a model which produces abstract food webs that far more
closely mimic the patterns found in real-world food webs.
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1 Introduction

The way in which a food web evolves to support diversity in an ecosystem has
long been a key area of interest for ecological scientists. One method for un-
locking some of the complex dynamics behind the evolution of a food web is
by simulating it artificially. This has been attempted many times, using many
different methodologies and strategies, all with varying degrees of success. The
work described in this paper builds upon earlier work by Norling [10], which at-
tempted to create an agent-based model of food web dynamics that mirrored a
more traditional system dynamics model. That work did demonstrate the emer-
gence of some simple food webs, but “complex food webs do not arise, even for
runs over extended periods.” A number of possible reasons were postulated in
the original paper, particularly the lack of a spatial representation, which meant
there were few advantages to the specialisation of species. Despite these issues,
the agent-based model showed “a certain level of correspondence to the system
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dynamics model,” and the paper also acknowledged that an “agent-based model
will allow the exploration of a range of variations that would be difficult (if not
impossible) to encode in the system dynamics model.”

In this project, the original work was replicated, using a modern framework
(as agent-based modelling frameworks have evolved considerably in the interven-
ing period), and subsequent iterations looked at the effect of considering spatial
diversity and heterogenous behaviour of the agents. The results of these exten-
sions demonstrate a far higher ability to parallel the diversity of species and
relationships between species that are observed in real world food webs. Section
2 looks at food webs and their evolution, as well as considering the challenges
of modelling these types of systems. Section 3 explains the (reimplementation
of) the original model by Norling, and Section 4 considers first the addition of a
notion of spatial diversity, and second, the addition of heterogeneous behaviour
(dependent on agent characteristics) which evolves with species. The paper con-
cludes in Section 5 with a summary and ideas for future work.

2 Food Webs and their Evolution

In simple terms, food webs are a network of all the predator-prey relationships
that exist in a particular ecosystem, and these evolve along with the species
within them. According to the Darwinian theory of evolution by natural selec-
tion, species will evolve based on a natural bias towards traits that offer them
an advantage to survival within their ecosystem [6]. There are a wide variety of
traits that are desirable for species in each ecosystem that relate to all aspects
of survival. For example, it may benefit a species to have excellent eyesight as
this will help them hunt for prey – allowing them to survive; but equally it may
benefit them to have thick fur to help them maintain body heat in a cold envi-
ronment. Each of these factors benefits the survival of the species, though they
help the species in very different ways.

As alluded to by Brown, Reilly and Peet [2], there are many external factors
that affect which traits are beneficial for a particular species. These include geo-
graphic factors, such as different physical features occurring in the environment;
biological features, such as competition; and environmental features, such as the
availability of resources. Combinations of these factors create a wide array of
opportunities in the environment for species to evolve and fill their own niche
spot in the food web. This may be especially true with geographical features, as
certain characteristics will heavily favour a species if it lives in one environment,
but may not be an advantage at all if it lives in another environment. For exam-
ple, a species could evolve to be very small to easily hide in the cracks of a rock
formation where it lives, but if it was living in the nearby desert, its size would
not help it hide and would mean that it was prey to a lot of other species.

It is the combination of all the factors above that, over millions of years of
evolution, leads to the vast speciation and diversity seen in food webs.
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2.1 Patterns Observed in Real-World Food Webs

There are a few characteristic patterns that are often observed in real-world food
webs. One such characteristic is the presence of trophic levels. Trophic levels in
an ecosystem are groups of species that represent one stage of the transfer of
energy up the food chain. As an example, both sharks and orca don’t have any
natural predators, meaning they are on the highest level of the food web, usually
level four or five. Food webs are usually large and complex, depending on the
biodiversity of a given ecosystem, and are constantly changed according to the
evolution and extinction of species [9]. Food webs also tend to have a feed-forward
structure where species in the higher trophic levels feed on species in the lower
trophic levels. This is a almost universal principle, with there being few instances
where a lower trophic level species can feed on a higher trophic level species, and
even the presence of bi-directional connections – where two species can feed on
each other – is generally a very rare phenomena. Another characteristic is that
omnivores rarely occur as food webs containing them “tend to be less stable than
webs without omnivory” [8]. These are the sort of characteristics that would
ideally be observed in a simulation of the evolution of a food web.

2.2 Population Dynamics

Various studies reinforce the need to understand the changing size and structure
of a population over time (recent examples include [1, 5, 7]). The population dy-
namics are the underlying cause of the system-level effects seen in populations
– so in order to accurately depict the diversity found in real-world food webs,
it is important to accurately simulate the population dynamics that ultimately
lead to this diversity. Traditional methods of simulation often use mathematical
models, or a ‘system dynamics’ approach [10], to attempt to recreate some of
these dynamics. These models can, however, over-simplify the population dy-
namics, which can lead to simulations that do not act in the same manner as
real-world food webs. As an example, Rossberg [12] explains that models like
this may use an ordinary differential equation to model the exponential growth
of a population. However, they do not take into account additional factors, such
as the effect of the exponentially growing species on the environment they live
in, which would make the real-life effect differ from the simulated effect.

Morin and Lawler [8] identify some of the key population dynamics that have
been observed in real-world food webs. The first of these is that food webs of
greater complexity tend to have a less stable structure, thus potentially leading
to more instances of species extinction or changes in the species that are thriving.
Similarly, the introduction or mutation of new species in the environment can
have significant impact on the existing population, such as over-predating species
or making species uncompetitive, which would likely lead to the extinction of
those species. This is one of the key principles of the evolution of food webs, and
can be observed in the real world. For example, the introduction of cane toads
in Australia has caused a large reduction in the population size of many of the
predator species that already existed in the environment, as the toads were better
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adapted to survival than other species, making the existing species uncompetitive
[3]. In addition, if a new species appeared that could take advantage of a niche
spot in the environment, such as an inhospitable location, then further species
may be able to evolve to feed on this new species.

Overall, population dynamics mean that real-world food webs are an ever-
changing network of species that are constantly evolving. When observed over
significant time periods, food webs are never completely stable. These are all
types of dynamics that should be sought after for a successful simulation of the
temporal evolution of food webs.

3 Reimplementation of the Previous Agent-Based Model

Rather than try to work with code that was written for a very old version of
Repast Simphony [11], the key features of that model (as described in [10])
were reimplemented using NetLogo [14]. This was largely a pragmatic step, as
NetLogo has a less steep learning curve than Repast. Fig. 1 shows an example
of the interface for this reimplementation.

Fig. 1. A snapshot showing a run of the reimplemented model in NetLogo. The graphs
display (from top to bottom) the number of agents in the model, the number of species
in the model, and the number of food web connections in the model as a function of
time. On the right-hand side, different colours represent different species of agents.

In the description of the original model, it was not clear whether agents
should be able to consume agents of their own species. In the reimplementation,
experiments were done with this both turned on and off, keeping all other factors
consistent. It was found that if agents were not allowed to consume agents of their
own species, this would lead to one extremely dominant species that destroys any
diversity in the ecosystem. In contrast, when they were allowed to consume their
own species, it meant that there was a more diverse array of species that were
able to co-exist in the environment. Therefore, the decision was made to allow
agents to consume their own species for this reimplementation. This essentially



Reconsidering an Agent-Based Model of Food Web Evolution 5

means each individual agent is only trying to survive itself and does not consider
the health its species as a whole, which is a trait that can be observed in many
animal species alive today.

The aim of the original work was to replicate the results from a system
dynamics model of food web evolution [4], and as in that system dynamics
model, the species within the model do not correspond to those in any particular
natural ecosystem, but are stylised species, each defined by a set of features. The
features themselves are also abstract - conceptually they could be things such as
“tough skin”, “fast locomotion” or such; things that could potentially give them
an edge over other species. In this reimplementation the same principles have
been followed.

3.1 Results from this Model

The food webs produced by the reimplemented model, such as Fig. 2, consistently
find that species which solely rely on predation struggle to survive, whereas
species that consume both other agents and the world have a much better rate
of survival. This leads to food webs that have a somewhat unrealistic structure,
as species are well adapted to feed on everything, whereas in real-world food
webs, species generally adapt to feed on specific food sources. In addition, having
species that are well adapted to consume anything in the environment means that
the food web lacks significant species diversity. This is due to most new species
not being able to compete with the dominant species, and so quickly dying out,
and when a species appears that is competitive it will simply cause the currently
dominating species to die out. Fig. 2 shows significantly less diversity than would
be found in a real-world food web. This also occurred in the original work, but
was even more extreme in the reimplementation.

Fig. 2. A typical food web produced by the reimplemented model.

One of the issues with food webs as shown in Fig. 2 is that the higher-level
species (A) has a strong advantage over the lower-level one (B): they can feed
both from the environment and from the other species. This leads to an explosion
in the population of A, followed by the extinction of population B, and then a
return to lower levels of population A (due to the decrease in food sources).
This contrasts with a more classical balance of species that is often considered
in agent-based modelling, such as wolf and sheep [13] or foxes and rabbits. In
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such models, one sees a growth in the predator species as they feast upon their
prey, but as the prey becomes scarce, so too do predator numbers fall, due to
lack of food.

This reimplemented model generally produces very similar results to those
found with the original model, both in terms of the dynamics observed and the
food webs produced. As an example, the lack of pure predators found in the food
web was also an issue in the original model, and it meant that only simple food
webs could be produced. Having this problem appearing in the models shows
a good level of correspondence of the reimplemented to the original model, but
is an issue that certainly needs to be addressed in future models. The inclusion
of a spatial representation in this model did not seem to have any significant
impact on the results when compared to the original model. This was somewhat
expected, as the literature survey identified a spatial representation as being a
tool to unlock new possibilities for improving the agent-based model, but not
necessarily being a major improvement on its own. In addition, the use of random
rather than fixed mutation did n0t seem to have a significant impact, which was
beneficial as the inclusion of the parameter was only due to ambiguity in the
original work.

As can be seen in Table 1, the model only sustains an average of 1.623 species.
This quantitatively backs up the observation of the lack of food web diversity
produced by this model and provides a point of comparison for comparing the
diversity of the food webs of this model to other models produced in this project.

4 Enhancements to the Model

Replication of the baseline model confirmed the shortcomings observed in [10];
the real aim of this work was to try to improve upon those results. The first
step towards this was to introduce a constant decay rate of the energy level of
agents. This means that the energy level for each agent is reduced by a constant
amount in each time step, resulting in an agent’s death if their energy falls to
zero. In addition, a different approach to distributing energy from the world to
the agents is introduced: a plant species which can be consumed by agents with
appropriate characteristics (that is, characteristics determine how successfully
the agents can gain energy from plants). The plants are then being removed
from that place in the environment for a refractory period whilst they ‘regrow’.

4.1 Geographic “niches”

Distinct geographic regions are introduced to the environment, creating addi-
tional niche spots in the environment that species can adapt to fill, which is
one of the key factors in the speciation of real-world animals. Thus, this change
should support a greater diversity of species that are able to survive in the en-
vironment. The different environments will be modelled as containing different
species of plants, so as to have differentiation between the different areas (and
different animals will ‘prefer’ – that is, consume energy more successfully from
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– different plants). To put into context how these species of plants define geo-
graphic regions, an example in nature is cacti being in the desert and tall trees
existing in the rainforest. Animals have to adapt to consume these in the same
way that agents would need to adapt to consume different plants in the model.

Fig. 3. A typical food web produced in a model with geographic specialisation.

Fig. 3 shows the food web created from one run of the extended model, after
around 3000 time steps. The initial observation upon viewing this food web is
the additional complexity it contains compared to any food web found with the
reimplemented model, sustaining five species on top of the four plant species.
This immediately addresses one of the primary issues with the reimplemented
model – the lack of diversity found in the food webs produced by the model.
In addition, the roles that species are playing in this food web are much better
defined and are more comparable to real-world food webs, with one clear basal
species and an apex predator. The food web produced is split into four distinct
trophic levels, starting with the plants as the first level. Species E is the pri-
mary basal species, which is capable of feeding upon most of the plants in the
environment. The energy then propagates up the food web to the next trophic
level, containing species D. Species D is the sole predator of species E, although
it is actually an omnivorous species as it can also consume plant 1. Species A,
B and C are all predators that have no capability to eat plants, so solely rely
on predation to survive. These form the final trophic level of the food web, with
species A being the apex predator as it has no predators.

There are some patterns in this food web that do not correspond to what
might be expected in a real-world food web. For example, Fig. 3 shows a ‘cycle’ of
connections where species D can eat E, E can eat C, and C can eat D. Structures
like this are highly uncommon in real world food webs. Energy is lost in the
transfer from one trophic level to the next, which means that a cycle in a food
web should not be able to sustain itself. Another problem with the structure
of the food webs produced is the presence of bi-directional connections, two of
which can be seen in Fig. 3. While these occasionally do exist in real-world food
webs, the frequency with which they occur in this model is unrealistic, once
again to the nature of energy transfer between trophic levels.

By including the geographical areas in this model, the additional niche spots
mean that this model overcomes the ‘competitive exclusion principle’ population



8 S. Armstrong and E. Norling

dynamic that was occurring in the reimplemented model. Instead, the niche
spots favour the evolution and survival of new species by some of the same
principles that cause diversity in real-world food webs, which were highlighted
in the literature survey.

4.2 Adding Heterogeneous Behaviour

Heterogeneous behaviour is where each species has a set of unique characteristics
that determine their behaviour and abilities, each of which has a value. These
values are on a continuous scale and represent traits that affect multiple aspects
of their behaviour, rather than just their interactions, as was the case with the
previous models. For example, an agent might have the ability to run faster, but
this could come at the cost of a higher metabolism. In this version of the model,
each agent has four features which are capable of mutation: predatory ability,
plant eating ability, defence, and speed. To ensure that these values do not
simply grow unconstrained, a fifth characteristic, metabolism, has been added
which derives from these:

Metabolism = PredatoryAbility+PlantEatingAbility+Defence+
Speed

5
(1)

This metabolism characteristic provides a trade-off for having better values
for other characteristics, and thus prevents the values of these characteristics
growing exponentially for the whole population. In this calculation the speed
is divided by five as it is initialised as a value that is on average five times
bigger than any of the other values, which are all initialised within the same
range. In addition to agents having characteristics, plants will also have a set of
characteristics which don’t evolve over time, but do define different ‘species’ of
plant according to the area in which they preside.

As in the previous models, an agent can eat another agent or plant when
they are in the same geographic location. Whether or not a given agent can feed
on another agent is defined by the following interaction rules:

x =

{
Eat, if PredatoryAbility × random(0, 2) > Defence

Ignore, otherwise
(2)

The random value is designed to add a level of stochasticity to interactions,
which should aid the evolution process. In addition to these rules, in this model,
an agent cannot eat another agent that is of the same species as itself, and an
agent cannot eat another agent that has a higher predatory ability score than
itself.

In this model species reproduce in the same way as they did in the first
two models – they produce an offspring once they are above a critical energy
threshold. When an offspring is created, each of the feature values of the parent
are randomly modified by a small amount, meaning the offspring is slightly
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mutated. This mechanic replaces the mutation mechanic of the first two models
and makes this process more organic, as the mutated agents are able to find a
niche over time by mutating further rather than immediately either finding a
niche or not finding one – and either thriving or going extinct as a result.

An additional modification in this version was that instead of each area hav-
ing a distinct plant species, each area has unique plant defence and plant energy
values. The purpose of this is to allow species to adapt to particular regions,
for example to adapt to an area that has a higher plant defence, but also has
less competition. Watkins et al. (2015) used a similar method for differentiating
between different geographic regions with great success. However, evaluation of
this model determined that this method of differentiating the different environ-
ments was not as effective as the methods used in the extended model, which
is perhaps due to the regions not being expressed by enough unique character-
istics. Future work in this area could experiment with alternative methods or
characteristic to describe the different regions.

The most challenging task with this variation was how to identify species
within the model. In the previous models, there are clear boundaries which
mean each agent has a clearly-defined species. In this variant, each agent has
a unique feature vector of values rather than a species. The initial approach
to this problem assigned each agent an individual class for each of each of its
features. These classes were determined by how the agent’s value for a given
feature compared to the maximum value that any existing agent had for that
feature. This feature would then be assigned a value from one to four depending
on how its value compared. This was run for all the features of each agent and
the array of classes assigned to an agent would determine its species – this is
referred to as linear species classification. As can be seen in Fig. 4 (left example),
this approach produces a diverse food web, but in fact too diverse – indicating
that the classification mechanism might be dividing the agents into too many
species.

To address this issue, a form of unsupervised learning clustering algorithm
was introduced to identify species. To the best of our knowledge, unsupervised
learning has never been used in this context before, so represents a novel ap-
proach to species classification in models of food web evolution. Many options
for algorithms were considered and experimented with, but ultimately the DB-
SCAN clustering algorithm was applied, as it both runs reasonably quickly and,
most importantly, does not require a predetermined number of clusters. The flex-
ibility to produce an undefined number of clusters was a key attribute required
for the problem, as the number of species that exists at any given time is not
known. The DBSCAN algorithm works by starting with a random initial data
point and looking for any other data points that are within a defined distance,
epsilon, of it. If it finds any data points, these are added to the cluster and the
algorithm will be run again to try to find any more data points are within the
scope of any point in the cluster. Once no more data points can be found, if the
size of the cluster exceeds a given threshold, min_samples, then the cluster will
be finalised and the algorithm will randomly select a data point that is not in a
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cluster to continue the process. If the threshold is not met the data points found
will not be assigned to a cluster.

This feature of the simulation was implemented in Python using NetLogo’s
‘py’ extension. It used Scikit-Learn’s ‘cluster’ module (Pedregosa et al., 2011),
which was passed the values for each parameter of each agent that were standard-
ised with a zero mean and unit variance using Scikit-Learn’s ‘StandardScaler’
class. The value of epsilon used was 0.5 and the min_samples value used was
5. Python then returned the labels found by the algorithm to NetLogo, where
they are used for plotting the number of species, colouring the agents according
to their species, and finding the food web connections between the species.

Fig. 4. Typical food webs produced in a model with heterogeneous behaviours. In the
left-most example, species were identified using linear species classification, while in
the right example, species were identified using unsupervised learning.

Fig. 4 shows food webs that were created from typical runs of the simula-
tion, with one using linear species classification on the left, and one using the
unsupervised learning approach on the right. The first observable difference is
their complexity. In the version with linear species classification (left), there are
eleven species of agents in total, with a great deal of food web connections be-
tween the species. The food web also does not contain the bi-lateral connections
or cycles that were found in the food webs of the extended model, meaning this
food web has a more natural feedforward structure, with better defined trophic
levels. There are around five trophic levels that can be seen in this food web,
which lines up well with the number of trophic levels found in real-world food
webs, per the literature survey. Likewise, this food web does not contain any
omnivores, which the literature survey identified as a relatively rare occurrence,
meaning this food web is certainly overall the most realistic that any model has
produced during this project. This certainly shows initial promise to the model,
but equally these results could be due to the linear species classification approach
having too many possible categories for each characteristic.



Reconsidering an Agent-Based Model of Food Web Evolution 11

Table 1. The average number of species evolved in runs of the different variants of the
model (averaged over 500 time steps)

Run 1 2 3 4 5 Average
Replicated model 1.693 1.795 1.554 1.644 1.427 1.623
Geographic niches 5.691 7.365 4.397 4.084 5.093 5.326
Heterogenous behaviours 7.808 9.746 10.591 9.914 6.849 8.982

Once again, with this unsupervised learning classification method the average
number of species were considered, again over 500 steps, as shown in Table ??.
The average number of species the is sustained in the heterogeneous behaviour
model is significantly better than both the extended model and the reimple-
mented model – 8.982 compared to 5.326 and 1.623 respectively.

5 Discussion and Future Work

This final model achieved some very interesting results and produced the most
realistic food webs of any model developed in this project. It introduced the novel
approach of using unsupervised clustering to determine the different species in
an agent-set, with the results achieved corresponding well to real world food-
webs and producing more realistic species than a linear species classification
approach.

The heterogeneous behaviour model represents the first steps into a new
style of agent-based modelling of the evolution of food webs, showing that het-
erogeneous behaviour with unsupervised clustering is an interesting and fruitful
concept for the purpose of simulating the evolution of a food web. Some such
potential future improvements include:

– Multi-agent reproduction – currently all the models presented here have a
simple system of reproduction, such that when any agent surpasses an energy
threshold, an offspring agent is produced that has that same or slightly
mutated characteristics from the parent. Including multi-agent reproduction
(i.e. two agents to be together and offspring to have characteristics draw
from both parents) would potentially help species adapt more effectively to
local regions, as the individuals in that species would have to be in the same
spatial location to reproduce.

– Additional wider environmental diversity – currently environmental niches
are determined solely by the plant species that exist there. Varying terrain
or water availability could allow more species to adapt to niche spots in the
environment, leading to greater diversity of species.

– More descriptive features for agents – this could come in the form of adding
additional features to agents, such as size or strength, or having the existing
features more intricately describe agent behaviour (such as making the exist-
ing feature vector multi-dimensional with multiple vector values representing
features like the predatory ability).
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– Exploring further approaches for defining the species – such a different clus-
tering algorithm or some form of tree structure that defines species based on
the parents of agents.

– Increasing the model scale – including more environments and many more
agents could help to yield more insightful results as these conditions better
parallel those found in the real-world.
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