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Abstract. Multi-agent crowd simulations are used to analyze crowd flows. How-
ever, there is a critical problem that the computational time increases with the
number of agents because these simulations are based on the interaction of the
agents. The approach of using deep neural networks is effective in some applica-
tions, such as fluid dynamics simulations. We propose a method of using convolu-
tional neural networks to estimate simulation results from the conditions of each
agent and the initial arrangement of a crowd. We evaluated our proposed method
through evacuation simulation and demonstrated that our proposed method could
obtain evacuation simulation results with high speed.

Keywords: Multi-Agent Crowd Simulation · Convolutional Neural Network ·
Evacuation simulation

1 Introduction

Multi-agent crowd simulations are used to analyze crowd flows. These simulations can
allow each agent to have conditions, such as a walking speed and route, and compute
crowd flows under specific situations. For example, according to previous works, sim-
ulations can be used to compute crowd flows during the evacuation from buildings [7,
12, 27, 31]. While the computations in these works are non-interactive, they should be
performed with high speed if they are to be used more adaptively.

There is a critical problem that the computational time increases with the number of
agents because these simulations are based on the interaction of the agents. Obtaining
results with high speed via these simulations is difficult. Nonetheless, no study has
addressed this problem, and therefore, a method capable of obtaining simulation results
with high speed is required.

The approach of using deep neural networks (DNNs) for simulations has been pro-
posed in some fields, such as fluid dynamics simulations [11, 26] and molecular dy-
namics simulations [4]. These works have demonstrated that this approach can obtain
simulation results with high speed, indicating that it is effective for the problem, and
therefore, we use DNNs in this study.
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Fig. 1. Our problem setting

This work estimates simulation results from the conditions of each agent and the
initial arrangement of a crowd. In this work, we assume the evacuation of a crowd from
a building. Given the conditions of each agent (such as the route and the speed) and
the initial arrangement of the crowd, we estimate the transition in the number of evac-
uees over time (Fig. 1). We propose a method that utilizes convolution neural networks
(CNNs), which are DNNs. CNNs can extract effective spatial features of crowds and
deal with multiple conditions (channels). In addition, we convert from the conditions of
each agent and the initial arrangement of a crowd to a structure suited for CNNs. Our
goal is to replace the simulation computation process with CNNs to obtain the results
with high speed.

We evaluated the effectiveness of our proposed method in terms of estimation ac-
curacy and speed. For this purpose, we used simulation data on evacuation settings in a
theater. We show that our proposed method performs evacuation simulations 50 times
faster than the simulator, with high accuracy simulation results. Our experimental re-
sults show that our proposed method can obtain simulation results with high speed.

Our contributions are summarized as follows:

1. We first address the critical problem of increasing computational time with the
number of agents in multi-agent crowd simulations.

2. We propose a method that uses CNNs, which are DNNs, to tackle the above prob-
lem. CNNs can extract effective spatial features of crowds and deal with multiple
conditions (channels).

3. We evaluated our proposed method through evacuation simulation and demon-
strated that our proposed method could obtain evacuation simulation results with
high speed.

2 Related Work

Several works have been conducted to compute traffic flows [2, 15, 20, 24], and human
behaviors [16] through multi-agent simulations. In this work, we deal with multi-agent
simulations to compute crowd flows (multi-agent crowd simulations) [29]. For example,
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these simulations have computed the evacuation of crowd in buildings [7, 31], aircrafts
[19], airports [27], and cities [12]. Simulation systems cosidering geographical infor-
mation [28] and human behavioral parameters [18] are proposed. These simulations
employ the bottom-up approach, which is computing crowd flows based on the inter-
action on the agents, and the computational time increases with the number of agents.
Thus, it is not easy to use them if we want to obtain their results as soon as possi-
ble. Nonetheless, no works have addressed this problem, and therefore, we address this
problem in this study.

Simulations are often time-consuming. The approach of using DNNs has been pro-
posed in some applications to solve this problem. In fluid dynamics simulations, meth-
ods to replace part of the computational process of Navier-Stokes equations with CNNs
are proposed [11, 26]. In molecular dynamics simulations, a method to estimate long-
term simulation results from using short-term simulation results by using DNNs is pro-
posed. These works have shown that this approach can obtain simulation results with
high speed, which indicates it is effective for the problem. These simulations and the
multi-agent crowd simulation are the same in that they compute complex phenomena
composed of numerous elements, and therefore, we use DNNs in this study.

CNNs have made great progress mainly in the image domain (image recognition
[23], image segmentation [1], object detection [17], and pose estimation [3]). These
networks have convolutional and pooling layers, extract effective spatial features, and
deal with multiple channels. They have recently been applied not only in the image
domain but also in other fields, such as natural language processing [6], acoustic signal
processing [14], and game AI [22]. Several works succeeded in predicting future crowd
flows with high accuracy by extracting spatial features of the current crowds using
CNNs [10, 13, 25, 30]. The initial arrangement of a crowd significantly impacts future
crowd flows in multi-agent crowd simulations, and therefore, we use CNNs.

3 Problem Setting
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Fig. 2. General setting in multi-agent crowd sim-
ulation
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Fig. 3. Our setting

Figure 2 shows the general setting in multi-agent crowd simulation. The scenarios of
the crowd I define the behavior of the crowd and are composed of multiple conditions
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such as route and speed [5, 9]. The coordinates of the crowd xt∈T indicates the position
of the crowd at the timestamp t ∈ T and has horizontal and vertical values, respectively.
Given the scenarios of the crowd I and the initial coordinates of the crowd x0, the
simulator computes the coordinates of the crowd x1, · · · ,xT and outputs the target
values y1, · · · ,yT . The rectangle in Figure 2 shows the snapshot of the crowd created
in the simulator based on the coordinates of the crowd xt.

4 Proposed Method

In this work, we estimate target values y1, · · · ,yT from the scenarios of the crowd I
and the initial coordinates of the crowd x0 (Fig. 3). We propose a method of using
CNNs to extract effective spatial features of crowds since the initial arrangement of a
crowd has a significant impact on future crowd flows in multi-agent crowd simulations.
In addition, we convert the conditions of each agent and the initial arrangement of a
crowd to a three-dimensional tensor (3d-tensor) suited for CNNs. Our method consists
of two steps: (1) converting the set of scenarios I and the initial coordinates x0 to a
3d-tensor and (2) estimating target values y1, · · · ,yT by using CNNs.

We use a multi-agent crowd simulator to generate several sets of pairs of scenarios
I , a set of initial coordinates x0, and target values y1, · · · ,yT . These are used as a
dataset for training CNNs.

4.1 Conversion to 3d-tensor
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Fig. 4. Conversion to a 3d-tensor
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Fig. 5. Estimation by using convolutional neural
networks (CNNs)

We convert the scenarios of the crowd I and the initial coordinates of the crowd
x0 to a 3d-tensor (Fig. 4). First, we develop a two-dimensional tensor (2d-tensor) for
each condition and each value, which is assigned an arbitrary value according to the
conditions of the agent existing at that coordinate. Then, we develop 2d-tensors for the
number of conditions and stack them in the channel direction to develop a 3d-tensor
z ∈ Rd1×d2×d3 . For example, if the scenario consists of speed, route, and departure
time, we develop a 3d-tensor with three channels. A 3d-tensor is a structure suited for
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CNNs and can retain features of the initial coordinates and the scenario composed of
multiple conditions. These features are essential for estimating target values because
simulations are based on them.

4.2 Estimation by using CNNs

CNNs output target values y1, · · · ,yT from the scenarios of the crowd I and the initial
coordinates of the crowd x0 (Fig. 5). CNNs are composed of convolutional and pooling
layers and are applied in several domains. CNNs have two advantages: (1) extracting
effective spatial features of crowds and (2) dealing with multiple conditions (channels).

5 Experiment

5.1 Evacuation simulation

In this work, we assumed the evacuation of a crowd from a building. In the event of
a disaster, the building manager wants to evacuate the crowd in the building to a safe
area smoothly. The manager can design various evacuation guidance guidelines through
simulations (such as estimating the elapsed time until the crowd has evacuated from the
building); however, simulation processes are time-consuming. Our proposed method
enables the manager to plan the best guidance for daily situations by reducing the com-
putation time of simulations.

We assumed The New National Theatre, Tokyo, as the building in this study. We
used CrowdWalk as a multi-agent crowd simulator. The evacuation of the crowd was
computed based on an actual evacuation drill in the theater by using CrowdWalk [25].
The crowd is in the Opera House, which is defined as the start point, and evacuates to a
safe area, which is defined as the goal point (Fig. 6).

The scenario is composed of four conditions: s1 the time to start the evacuation, s2
the exit door of the Opera House, s3 the route for the evacuation, and s4 the walking
speed. s1 to s3 are based on the guidance by the staff of the theater. s4 are dependent
on the people characters, such as the elderly, children, the public, and wheelchair users.
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Fig. 7. Snapshots of an evacuation simulation and transitions in the number of evacuees over time

The condition s1 indicates the time to start evacuation in seconds from a point in time
after a disaster occurs. The target values y1, · · · ,yT indicate the elapsed times for the
number of people who have arrived at the goal point to reach 10t% of the total number
of people. Let T = 10 and 0 ≤ t ≤ 10. We indicate the transition in the number of
evacuees over time by connecting the elapsed times y1, · · · ,yT . Figure 7 shows snap-
shots of the crowd created in the simulator based on the coordinates of the crowd and
transitions in the number of evacuees. Given the scenarios of the crowd I composed of
four conditions and the initial coordinates of the crowd x0, the simulator computes the
coordinates of the crowd x1, · · · ,xT based on the scenarios of the crowd I and out-
puts the elapsed times (the transition in the number of evacuees over time) y1, · · · ,yT .
Therefore, we estimated the elapsed times y1, · · · ,yT from the scenarios of the crowd
I and the initial coordinates of the crowd x0 in this experiment.

5.2 Dataset setting

We gave the various scenarios of the crowd and initial coordinates of the crowd and let
the simulator output the elapsed times for this experiment. We obtained 60,000 sets of
scenarios of the crowd, the initial coordinates of the crowd, and the elapsed times.

The Opera House has 22 horizontal columns and up to 42 vertical columns. Figure
8 and Figure 9 show the Opera House, divided by seats and blocks.
Initial coordinates of the crowd I: For 30% of samples of all data, agents were
generated randomly for each seat ranging from 0 to no greater than the maximum
number of people allowed to sit in that seat (Fig. 8). For 70% of samples of all data,
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Fig. 8. Opera House divided by seats Fig. 9. Opera House divided by blocks
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Fig. 11. Evacuation routes guidance

α ∈ {0.4, 0.7, 1.0} was chosen randomly for each block, and agents were generated
randomly for seats in that block with the maximum number of people×α (Fig. 9).
Time to start evacuation s1: The time to start is within {0, 30, · · · , 300}. For 10% of
samples of all data, the time was set 0 s for all agents. For 20% of samples of all data,
the time was chosen randomly for each seat (Fig. 8). For 70% of samples of all data,
the time was chosen randomly for each block (Fig. 9). It was assumed that at least one
seat agents start evacuation at 0 s.
Door to exit the Opera House through s2: Six exiting doors are within Exit 1-6
(Fig. 10). Agents on the left half of the Opera House exited through one of Exit 1-3,
and agents on the right half exited through one of Exit 4-6. Two boundaries were set
randomly on the left half and right half, and agents sitting in front of the first boundary
exited from Exit 1 (left half) or Exit 4 (right half), agents sitting between the first and
second boundaries exited from Exit 2 (left half) or Exit 5 (right half), and agents sitting
behind the second boundary exited from Exit 3 (left half) or Exit 6 (right half).
Route to evacuate through s3: Agents exiting from the Opera House through Exit 1-3
evacuated through route A or B, and agents exiting through Exit 4-6 evacuated through
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route C or D. The rates of routes A and B, along with C and D, were randomly set, and
the route was chosen based on each rate.
Walking speed s4: There are three-speed types: the default speed of CrowdWalk,
1.5 and 0.5 times faster than the default speed. We assumed that the first speed is the
average speed of typical adults, the second speed is the average speed of young people,
and the third speed is the average speed of older people or wheelchair users. For 30%
of samples of all data, the speed was randomly chosen for each seat (Fig. 8). For 70%
of samples of all data, the speed was randomly chosen for each block (Fig. 9).

5.3 Conversion to 3d-tensor

We converted the scenarios of the crowd I composed of four conditions and the initial
coordinates of the crowd x0 to a 3d-tensor. First, we developed a 2d-tensor for each
condition and value, which was assigned an arbitrary value according to the condition
of the agent that existed at that coordinate. In a tensor of the time to start evacuation
s1, agents starting evacuation at 0, 30, ... , 300 s later were assigned 1, 2, ... , 11,
respectively. In a tensor of the door to exit the Opera House through s2, agents exiting
through the doors Exit 1, Exit 2, ... , Exit 6 were assigned 1, 2, ... , 6, respectively. In
a tensor of the route to evacuate through s3, agents evacuating through routes A, B,
C, and D were assigned 1, 2, 3, and 4, respectively. In a tensor of the walking speed
s4, agents walking at 0.5 times faster than the default speed, the default speed, and 1.5
times faster than the default speed were assigned 1, 2, and 3, respectively. The values of
tensors with no agents were assigned 0, and we multiplied all values by 0.1 following
the standard techniques of DNNs [21]. Then, we stacked these developed 2d-tensors
in the channel direction to develop a 3d-tensor z ∈ Rd1×d2×d3 , thus we obtained a
3d-tensor of 4× 22× 42.

5.4 Estimation using CNNs

CNNs output the elapsed times (the transition in the number of evacuees over time)
from the 3d-tensor. We used ResNet-50 [8], which is a typical CNN. ResNet has a
residual module that includes a shortcut to pass H(a) = F (a) + a to the next layer.
The residual module has a shortcut that allows the gradient to be passed directly to
lower layers during backpropagation. This prevents the gradient from vanishing even in
a network with very deep layers and enables efficient learning.

We used root mean squared error (RMSE) as the error function of the output layer
of the CNN and Adam as the optimization function with β1 = 0.9, β2 = 0.999, and
ϵ = 10−8. The number of the epoch was set to 200, and the learning rate was first set to
0.001 and multiplied by 0.5 for 60, 120, and 160 epochs. The batch size was set to 256.

We split all data into training data (40,000), validation data (10,000), and test data
(10,000).

6 Result

We evaluated the estimation accuracy, the multiple conditions dealing ability, and the
estimation speed. We show that our proposed method can estimate simulation results



Replacing Method for Multi-Agent Crowd Simulation by CNN 9

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

20 40 60 80 100
Number of people (%)

0

250

500

750

1000

1250

1500

1750

Ti
m

e 
(s

)

Estimate
True

Fig. 12. Estimated and true elapsed times. The blue color indicates the estimated transition and
the orange color indicates the true transition. The horizontal axis shows the percentage of people
who have arrived at the goal point, and the vertical axis shows the elapsed times for each figure.

Table 1. Average loss for number of condition types

Number of condition types Average loss (RMSE)
1 116.607
2 98.879
3 75.207
4 34.157

with high speed and accuracy and deal with multiple conditions based on experimental
results.

First, we evaluated the estimation accuracy. The error (RMSE) for the test data
was 34.157. Figure 12 shows six randomly selected estimated and true elapsed times
(the transitions in the number of evacuees over time) for the test data. The blue and
orange colors indicate the estimated true transitions, respectively. The horizontal axis
shows the percentage of people who have arrived at the goal point, and the vertical
axis shows the elapsed times for each figure. These results show that the estimated and
true elapsed times almost overlap, indicating that the proposed method can estimate
simulation results with high accuracy.

Second, we evaluated the multiple conditions dealing ability. The ability indicates
whether our proposed method could train from multiple conditions. We compared the
average loss (RMSE) when the number of condition types was varied from 1 to 4 (Table
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Fig. 13. 3d-tensors for number of condition types

Table 2. Time taken to output a result using the proposed method and the simulation

Simulator (CrowdWalk) Our proposed method
8.223 (s) 0.161 (s)

1). The number of channels was set to be four even if the number of condition types
was different (Fig. 13). For example, when the number of condition types is one, a 3d-
tensor is composed of four s1, s2, or others. When the number of condition types is
two, a 3d-tensor is composed of two s1 and two s2, two s3 and two s4, or others. We
developed all possible combinations of conditions and averaged the loss (RMSE) for
the number of condition types. The result shows that the average loss decreases as the
number of conditions increases, and it is minimum for all conditions (the number of
condition types is 4) These indicate that the proposed method can deal with scenarios
composed of multiple conditions.

Finally, we evaluated the estimation speed. We compared the time taken to out-
put a result using the proposed method and simulation (Table 2). The simulation was
computed on an Intel i7-5930K CPU. From measurement results, it took approximately
8.223 s on average. Our proposed method was computed on a TITAN RTX with 24
GB. From measurement results, it took approximately 0.161 s on average. Therefore,
the proposed method could estimate approximately 50 times faster than the simulation.
This indicates that the proposed method could obtain the results with high speed. The
estimation time of the proposed method is independent of the simulation time.

In this study, we use DNNs to estimate simulation results with high speed. DNNs
perform with high accuracy in using large training data, target samples interpolated into
the training data. Therefore, it is desirable to have large and comprehensive training
data. A situation in which the training data are limited is a future challenge.

Based on the results, we conclude that our proposed method replaces the simulation
computation process and enables us to rapidly obtain simulation results.
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7 Conclusion

We addressed the critical problem that the time to compute increases with the number
of agents in multi-agent crowd simulations. We proposed a method using CNNs to esti-
mate simulation results from the conditions of each agent and the initial arrangement of
the crowd. We evaluated our proposed method via evacuation simulations and demon-
strated that our proposed method enables us to obtain evacuation simulation results with
high speed.
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