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Abstract. Multi-agent task allocation methods seek to distribute a set
of tasks fairly amongst a set of agents. In real-world settings, such as
soft fruit farms, human labourers undertake harvesting tasks, assigned
by farm managers. The work here explores the application of artificial
intelligence planning methodologies to optimise the existing workforce
and applies multi-agent based simulation to evaluate the efficacy of the
AT strategies. Key challenges threatening the acceptance of such an ap-
proach are highlighted and solutions are evaluated experimentally.
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1 Introduction

On farms that grow high-value crops, such as soft fruit (e.g. strawberries, rasp-
berries, cherries), field vegetables (e.g. broccoli, cauliflower) and ornamentals
(e.g. daffodils), seasonal workers are hired to pick ripe produce at harvest time.
Shortages in seasonal labour, due to a variety of global political, social, economic
and health factors [4,13, 19] are motivating farmers to seek innovative solutions
for managing their harvest workforce—otherwise, farms may be left with plants
unharvested, which is both costly and wasteful [20]. To help address this situa-
tion, we have been exploring the application of artificial intelligence (AI) plan-
ning methodologies to optimise the existing workforce and multi-agent based sim-
ulation (MABS) to evaluate the efficacy of our strategies. Although our methods
and simulation results are backed by real-world data sourced from a commercial
farm, there are a number of key challenges that we have faced along the way
that could threaten the acceptance of such an approach. Here we describe these
challenges and present our solutions designed to mitigate their impact.

The first challenge is centred around how to handle the different types of
incrementally produced data so that our solution can be deployed when it is
needed. In general, there are two types of data that we can obtain from farms:
historic data, which records what happened in the past; and prognostic data,
which estimates what will happen in the future. Most modern farms maintain
detailed historic electronic records describing the resources expended and labour
activities, helping farm managers to minimise costs in a sector that traditionally
operates at very low margins and with high risk due to dependence on the
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weather. In order to plan ahead—on a daily basis as well as seasonally—farmers
also develop detailed estimates describing when crops should be planted, tended
and harvested. This includes associated volumes and locations, as well as the
size and skills of the labour force required to accomplish the planting, crop care
and harvesting tasks.

The second challenge relates to the application of multi-agent based simula-
tion to assess the impact of our proposed Al planning strategies for managing the
workforce versus the manual strategies currently employed on farms. Typically,
this involves farm managers wrangling spreadsheets in order to determine who
is available on any given day to perform the range of tasks that must be com-
pleted. While farms do record many aspects of harvesting, they do not record
details that would better inform a more accurate simulation of workforce, such
as tracking where individuals walk in fields and when they take breaks. Although
it is technically possible to record such data, this is not something that workers
are happy about—Dbeing watched by “big brother” is uncomfortable, especially
for many migrant workers, and could cause workers to quit their jobs and seek
work on other farms where they are not being watched so closely. So we are
challenged by wanting to show improvement within a simulation that is not a
completely accurate portrayal of what is happening in the real world.

The third challenge is the workforce management strategy itself. In earlier
work [6, 7], we explored different methods of assigning workers to fields and tasks
to workers in the fields. Here we challenge some of the assumptions we have made
in that work, particularly around modelling workers with no historic data.

This paper is organised as follows. Section 2 provides background on the spe-
cific fruit farm use case we simulate here and briefly discusses AI and multi-agent
applications in agriculture. Section 3 describes the approach we have developed
to address the challenges mentioned above. Sections 4 and 5 present our exper-
iments and results. Section 6 summarises our work and highlights next steps.

2 Background

On soft, fruit farms, each day during harvest season a farm manager determines
which fields are ready for picking and how many groups of workers, or “teams”,
are needed. Each team harvests one or more fields; the manager decides which
workers to assign to each team and which team to assign to each field. When fruit
pickers arrive at the fields, team leaders assign picking areas for each worker.
Pickers harvest ripe fruits and place them in containers held in trays; filled trays
are then transported to packing stations where they are weighed and tallied to
record the volume picked and by whom—often pickers are remunerated based
on the volume of ripe fruits they pick. This picking information provides a rich
data set from which a range of different models could be derived, including the
multi-agent model developed here.

Potential opportunities for multi-agent and multi-robot methodologies ap-
plied within the agriculture domain are analysed and characterised in [16]. This
includes use of autonomous robots to drive in fields and collect sensor data [4],
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which is analysed using machine vision methods to identify ripe fruit [11], map
regions in need of irrigation [1], or locate weeds [15], as well as robotic solutions
for picking and transporting crops [5, 14, 24]. Some researchers have experimen-
tally evaluated hybrid human-robot solutions, where robots transport produce
while humans do the picking [2,23]. In our previous work [7], we showed how
Multi-Robot Task Allocation (MRTA) strategies—evaluated using our simulator
(see Section 3.3)—can be used to suggest the best ratio of “runners” (workers
who transport produce) to pickers.

MRTA problems address situations in which a group of robots must work
together to complete a set of tasks. A popular family of solutions to MRTA
problems are market-based auction mechanisms. As described in the literature [3,
9,10], auctions are executed in rounds that are typically composed of three
phases: (i) announce tasks—an auction manager advertises one or more tasks
to the agents; (ii) compute bids—each agent determines its individual valuation
(cost or utility) for one or more of the announced tasks and offers a bid for any
relevant tasks; and (iii) determine winner—the auction manager decides which
agent(s) are awarded which task(s).

There is a substantial body of work on the application of auction-based mech-
anisms to the problem of allocating tasks for multi-agent teams. A popular
method within the literature is the sequential single-item (SSI) method [12].
In SSI, all unassigned tasks are announced to the bidders and the bidder that
responses with the best (e.g. shortest duration) bid for any task is allocated that
task. The auction repeats in rounds until all tasks have been allocated. Auction
mechanisms take into account both the self-interests of individual bidders as
well as group goal(s) represented by the auction manager. Various variations on
SSI have been proposed. Heap & Pagnucco [8] proposed sequential single-cluster
(SSC) auctions for solving pick-up and delivery tasks in a dynamic environment.
SSC announces and assigns clusters of geographically neighbouring tasks in each
round, instead of only assigning one task (SSI).

Schneider et al. [22] conducted an empirical analysis of different auction-
based mechanisms: SSI, ordered single-item (OSI), parallel single-item (PSI) and
round robin (RR) (as the simple baseline). Results revealed that the advantages
of SSI can be greatly diminished when tasks are dynamically allocated over time.
Subsequently, the performance of task allocation mechanisms in a set of param-
eterised mission environments was investigated [21]. Results showed that some
task allocation methods consistently outperformed all others—but only under
specific mission parameters. In the environments evaluated, no single method
managed to outperform all others across all sets of parameters.

In our early attempts to address to the problem of assigning workers to fields
(as outlined in Section 3.2), we compared SSI with RR. Although an in-depth
investigation and comparison is planned in future work, our preliminary results
showed more favourable performance with RR. Thus the approach presented here
is based on RR. RR benefits from low computation costs and results in (roughly)
even distribution of tasks (i.e. the number of tasks each agent is assigned differs
at most by 1 when any agent is capable of performing any of the tasks on offer).
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For MRTA problems, RR alone can result in inefficient task allocations. We
therefore modify the output of RR to improve the solutions efficiency.

3 Approach

This section describes our overall approach in which we applied multi-agent
based simulation to compare different methods of managing human labour on a
soft fruit farm. First, we model the behaviour of individual workers. Second, we
group workers into teams. Third we use a simulator to evaluate the teams.

3.1 Modelling Workers

We model human workers—fruit pickers—using a data-backed model, built on
information that is already collected on many farms, as explained below. This
“worker model” is based on an estimate of how quickly a picker harvests each
type of fruit grown on the farm. Different types of fruit require different tech-
niques for harvesting and thus different skills. For each type of fruit, each picker
is assigned a different picking speed, in grams per second, computed for each type
of fruit they have picked previously'. This is calculated by dividing the amount
of fruit a picker picked by the duration the picker picked for, and finding the
average over all dates they picked that type of fruit on.

If we encounter a worker who has not picked a certain type of fruit (i.e. does
not have any historic information in our data set), we cannot assume that the
worker is not able to pick that fruit. They could be a new worker whose experi-
ence is unknown to our system, or could be a worker who has never previously
been assigned to a field with a particular type of fruit. To set the speed of these
workers we cluster the pickers, using k-means clustering [18], and use the center
of the cluster as the speed of all pickers in that cluster. When the clusters are
sorted, this enables us to determine a rank (in [0. .. (k—1)]) for each worker (for
each type of fruit they have picked). Our experiments look at the effect using a
different default rank and clustering has on our results (see Section 5).

3.2 Team creation

Our team creation method involves two steps: (i) creating an initial solution
using Round-Robin; and (ii) improving the solution to minimise the variance in
the estimated field picking times across all fields. An overview of our method
(and variations) has been presented in an extended abstract [6].

The first step in our method is to generate an initial solution, using RR.
Workers are sorted slowest first, using their average picking speed over all fruits.

! Note that at least two trays of the same type of fruit must be recorded in order to
calculate a picking speed for that fruit. If there are not at least two trays recorded
in the data set, then the picker is assigned the default picking speed—Ilike workers
who have not picked any fruit of that type.
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Fields are sorted by yield (lowest first). RR assigns the first worker to the first
field, the second worker to the second field and so forth. After a single worker
has been assigned to each field, the fields are re-iterated over to assign each of
them a second worker, and so forth until all workers have been allocated.

The second step in our method improves the solution by reassigning workers
from fields requiring less picking time to fields requiring more picking time. This
involves first computing the estimated picking time (ept) for each field (f) for
a particular date (d), assuming it is picked by a specific team of workers ().
This is calculated by dividing the estimated yield (for field f on date d) by the
sum of the workers’ picking speeds. After calculating the initial ept of each field,
our approach creates a list of pairs of fields that is sorted by the difference in
estimated picking time between the two fields (Aept). The pair of fields with the
largest Aept appears first, and the rest are taken in descending order of Aept.
Then the algorithm searches for the picker who, when moved from the field with
the shortest picking time to the field with the longest picking time (in each pair
of fields), produces a reduced Aept. We call this the “candidate worker”. If no
worker is moved (i.e. because moving a worker would increase Aept or the field
with the shortest duration has two or fewer workers), then the pair of fields is
removed from the list of all pairs of fields. The algorithm continues until the list
of pairs of fields is empty.

3.3 Simulating Teams

We have constructed a multi-agent based simulation to evaluate the our pro-
posed teams and compare them to the actual teams manually created by farm
managers. Our simulator was developed using MASON [17], a discrete-event
multi-agent simulation library and was introduced in previous work [7], where it
was used to evaluate different methods of allocating tasks to workers within each
team. The work here expands on this by bundling and sorting picking tasks. In
our simulator, picking tasks are represented by patches (areas) of fruits that are
ripe, as illustrated in Figure 1. The colour of the patches, represents the number
of ripe fruits: red patches contain more ripe fruits than orange, which contain
more than yellow, and green indicates low amounts of ripe fruits.

An agent in our system is a fruit picker and is defined by the tuple p =
(v, £, sp,c), where £ is the agent’s initial location, v its navigation speed and s,
its picking speed (grams per step). When a picker has reached their capacity
(¢), they transport the picked fruit to a packing station. Tasks are allocated to
pickers using SSI. A picking task is defined as an (z,y) location and a number of
ripe fruits. The cost of a picking bid is the duration for the agent to complete all
their previously assigned tasks plus the task being auctioned. The duration of a
single picking task is the sum of three components: the time it takes the agent to
navigate to their picking location; the time it takes to pick the ripe fruits; and,
when c is reached, the time it takes to navigate to the packing station, drop off
the fruits (currently a fixed value set to one timestep) and return to the patch.

Rather than a picker bidding on a single task, tasks can be bundled together
by row and which aisle the picking is executed in, i.e. the row is split in half
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Fig. 1. Example of a commercial field: (a) within our simulator, and (b) a zoomed-
in section highlighting areas within the polytunnel, namely a row where plants are
growing, colour-coded according to ripeness, and aisle, the space between rows where
pickers move. Each field has multiple horizontally and vertically adjacent polytunnels
(the example field has 3 x 11 polytunnels) containing rows of crops, which are reached
via aisles (the example polytunnels have 5 rows and 6 aisles). Each row contains two
vertically adjacent fruit patches and can be any number of patches long (e.g. 10). See
text for explanation of the colours.

lengthwise (for the example shown in Figure 1, each bundle will contain 10 tasks).
This will decrease the distance travelled by agents and the likelihood of agents
obstructing each other (since an agent will travel between fewer rows). When
bidding on a bundled task, an agent will create bids for each of the independent
picking tasks in a bundle, and the cost for the bundle will be the cost of the
picker executing all its previously assigned tasks plus the tasks in the bundle.

To further optimise a picker’s independent schedule, their tasks are sorted by
(x,y) location. The agent will pick the row with the lowest = position (starting at
the lowest y position) and then pick the second to lowest row, and so forth. This
sorting occurs during the bidding process. The timings of all tasks proceeding
the one being bid on are (provisionally) updated, and the cost of the bid is set
to the end time of the last task. If the agent wins the task, the provisional task
timings are retained.

4 Experiments

We received data from a commercial fruit farm during the 2021 picking season,
covering 182 picking days and 30 fields. Each field contained one four types of
soft fruit (strawberries, raspberries, blackberries or cherries). Our experiments
assess our approach in the face of the three challenges introduced in Section 1:

1. Modelling from historic vs real-time and prognostic data:

— Historic: The entire season of picking data was processed to create the
worker model. Therefore, which worker is capable of picking each fruit is
known. The default picking rank is only used when the picker has picked
too few fruits to be able to calculate their picking speed.

— Live: Only data recorded up to any given day is available, thus yield
estimates are based on prognostic assessments by farm managers and
worker models are based on picking records only up to the day before
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the one being planned. This is the data that would be available if our
system were running on a farm and managing labour on a daily basis.
2. Simulating actual vs proposed teams:

— Actual: These are the results of using the teams created by farm man-
agers (i.e. teams actually deployed), as produced by our simulator.

— Proposed: These are the results of using the teams proposed by our
methods (described in Section 3), as produced by the same simulator.

3. Clustering and determining default rank picking speed:

— Def_rank: This is the default rank to use for modelling a worker when
there is no information about that worker in the data set. Three values
are compared: 3 (uses a mid-range picking speed), —1 (uses a picking
speed lower than any worker with any experience) and * (uses the average
picking speed over all workers).

— N_clusters: This is the number of clusters used for grouping workers.
Two values are compared: 6 and |WW/|, where the latter is effectively “no
clustering” since the number of clusters is equivalent to the number of
workers. When the number of clusters is equal to |W|, the speed of
the default rank is set to the average picking speed (denoted * above);
otherwise the default rank is either 3 or —1.

Two metrics are recorded to evaluate the affect of the different conditions
and parameter settings listed above. These are:

— execution time: The amount of simulator time for each picking date, for
each field. In other words, the amount of time that elapses between when
the team arrives at the field and when the team finishes picking that field.
As some workers could spend less time working than others, particularly if
the workload is unevenly distributed, we also calculate staff time.

— staff time: The sum of the simulator time worked by all workers each day,
for each field. This metric is a proxy for payroll costs.

Experiments were executed to evaluate the performance of our workforce
management strategy, specifically as it relates to the choices of grouping work-
ers into clusters and assigning a picking speed for workers for whom we have
no data: (def-rank=3, N_clusters=6) versus (def-rank=-1, N_clusters=6) versus
(def-rank=*, N_clusters=|W|). Each experiment involved running our simulator
under four conditions: (Historic, Actual), (Historic, Proposed), (Live, Actual)
and (Live, Proposed). For the (Live, Proposed) experiments, the estimated yield
and list of available workers are used since, the actual yield and worker list would
not be available when a schedule were created. For the Historic and (Live, Ac-
tual) experiments, the actual list of workers and actual yield are used. There is
no stochasticity, and thus, for each setup, the simulation is ran once per date on
each of the fields with a yield value.

5 Results

This section presents our experimental results. Numeric results are shown in
Table 1. Plots are shown to compare the results; in all plots presented, error
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bars indicate +1 standard deviation. All samples are normally distributed, as
confirmed using the Shapiro-Wilk test for normalcy [25]. We compare the perfor-
mance metrics for the actual teams and our proposed teams for each of the three
parameter settings discussed previously. Tests for significance between actual
and proposed teams are performed using Student’s ¢-test for two independent
samples. Tests for significance amongst the three parameter settings (Def_rank
and N_clusters combinations) are performed using one-way analysis of variance
(ANOVA) with three samples. For all statistical tests, we use p < 0.01.

conditions parameters number of‘ resulting metrics

data _teams def-rank N_clusters samples | execution time staff time
Hist Actual 3 6 1019] 25,265 (13,146) 577,402 (353,091
Hist Actual -1 6 1019| 23,265 (13,146) 577,402 (353,091
Hist Actual * W] 1019|22,879 (12,905) 551,283 (324,557
Hist Prop 3 6 1019]31,714 (10,423) 522,211 (286,605
Hist Prop -1 6 1019(31,714 (10,423) 522,211 (286,605
Hist Prop * [W] 1019| 32,081 (12007) 514,327 (279,039
Live Actual 3 6 1019]23,594 (13,602) 567,618 (340,717
Live Actual -1 6 1019] 28,164 (23,912) 621,310 (418,181
Live Actual * [W] 1019] 24,817 (14,854) 580,586 (358,348
Live Prop 3 6 1024| 19,303 (7,179) 430,891 (207,562
Live Prop -1 6 1024| 31,569 (12,942) 702,767 (394,499
Live Prop * W] 1024| 23,610 (7,765) 536,844 (283,541

Table 1. Experimental results showing mean (and standard deviation) of execution
time and staff time for all variables and conditions evaluated. Times are reported in
terms of simulator time steps. The best values (shortest times) comparing parameters
within one condition are highlighted in bold. The best values comparing between actual
and proposed condition are highlighted in italics.

5.1 Historic Data

First, we look at results obtained using the historic data set. When compar-
ing the actual teams with our proposed teams, our proposed teams fare better
for staff time than execution time. The actual teams produced a shorter eze-
cution time than our proposed teams; the difference is statistically significant
for all three parameter settings (T-test scores for each pair, in the order listed
in Table 1: t=-16.07, p=0.000; t=-16.07, p=0.0000; t=-16.66, p=0.0000). How-
ever, our proposed teams resulted in a shorter staff time than the actual teams;
again the difference is statistically significant for all three parameter settings
(respectively: t=3.87, p=0.0001; t=3.87, p=0.0001; ¢t=2.75, p=0.0060). This is
a positive result, since we are more concerned with reducing staff time
than execution time.

When comparing the three parameter settings, we find no statistically signif-
icant differences for either execution time (ANOVA scores for each triple within
the Actual and Proposed times, respectively: F=0.297, p=0.7432; F=0.378, p=
0.6852) or staff time (respectively: F=1.958, p=0.1413; F=0.261, p=0.7700).
These are illustrated in Figure 2.
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Fig. 2. Results for Actual versus Proposed teams using the Historic data set.

5.2 Live Data

Second, we look at results obtained using the live data set. When comparing
the actual teams with our proposed teams, our proposed teams have better
results for both execution and staff time for two of the three param-
eter settings, excepting (def_-rank=-1, N_clusters=6). The results for the first
two parameter settings for execution time are statistically significant, but not for
the third (def-rank=%*, N_clusters=|W|) (t-test scores, in the order listed in Ta-
ble 1: t=8.919, p=0.0000; t=-4.004, p=0.0001; t=2.301, p=0.0214). Results for
all three parameter settings for staff time are statistically significant
(t=10.954, p=0.0000; t=-4.527, p=0.0000; t=3.058, p=0.0023), When comparing
the three parameter settings, we find statistically significant differences for both
execution time (Actual and Proposed times, respectively: F=17.4862, p=0.0000;
F=425.464, p=0.0000) and staff time (F=>5.716, p=0.0033; F=206.488, p=0.0000,
respectively).

However, for the two reasons described below, deciding which approach per-
forms best is inconclusive. First, the default picking speed is inaccurate. As
shown in Figure 3, for Proposed, there is a significant increase in time when the
default rank is decreased from 3 to -1; for Actual, the difference is not signifi-
cant. The proposed teams contained more pickers assigned to fruits they had no
experience at picking than the actual teams. Thus, if the default rank (picking
speed) is set too high, it will inflate the difference between the proposed teams
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Fig. 3. Results for Actual versus Proposed teams using the Live data set.

and the actual teams. The inverse is also true: the default rank could be set
too low, causing the proposed teams to appear worse than they would actual be.
Therefore, unless the default picking speed is not used, it is difficult to accurately
evaluate results within simulation.

The second reason is due to inaccuracies in the estimated yield and the list
of available workers. As mentioned in Section 4, the proposed teams (during the
Live experiments) use the estimated yield and the worker availability lists since
this is the information that will be available when the schedule is created. How-
ever, occasionally a field is estimated to be picked but is not actually picked, and
vice versa. Therefore, the actual teams use the actual yield (since we do not have
the deployed teams for fields that were not actually picked). This has resulted in
the (Live, Proposed) experiment having a larger sample size than (Live, Actual),
as shown is Table 1. Further, some workers in the list of available workers may
not actually work on certain days. Therefore, there will be differences in the
resulting executing time and staff times caused by these inaccuracies.

6 Summary and Future Work

This paper has explored challenges affecting the evaluation and deployment of
multi-agent task allocation method for managing the harvesting workforce. Our
results have shown that when using a historical data set, our proposed teams
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produced significantly shorter staff time than the actual teams. Although the
parameter setting (Def-rank=%*, N_clusters=|W|) produced the best staff time
results for both actual and proposed teams, the result is not statistically sig-
nificant. When using a live data set, our proposed teams produced significantly
shorter execution time and staff time than actual teams with two of the three
parameter settings, the best being (Def-rank=3, N_clusters=6). There are still
questions about the validity of our method, given the number of aspects that are
difficult to reproduce in a simulation. For the upcoming season, we are planning
an experiment with a commercial farm in which we deploy our proposed teams
in order to evaluate our method in a more realistic way. This will also give us
data through which we can improve our simulator.

In future work, we will investigate evaluating further parameter settings and
task allocation mechanisms, trialing the proposed team allocations at a commer-
cial farm and evaluating our approach on a hybrid robotic-human workforce.
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