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Abstract. Multi-agent mixed traffic modelling and simulation are needed
for safety estimation in traffic situations. Many of the accurate traffic pre-
diction models use deep learning methods. However, most of these models
are considered black box models, which means that the output cannot
be directly interpreted based on the input. However, such interpretation
can be valuable, for example, in providing explanatory information about
the model predictions for a simulation or a real-world dataset.
On the other hand, formulating the prediction problem as input to output
mapping problem by defining it as markov decision process (MDP) is a
more realistic approach to fully imitate the traffic entity behaviour.
Therefore, the presented method here implements a behaviour cloning
approach with memoryless architecture. As a result, it is easier to link
the output with the input using saliency maps extraction methods.
The calculated salience maps highlight the traversable areas for the agent
to reach its destination, avoiding collision with other agents and obsta-
cles. They also show the salient roads edges that influence the direction
of the predicted movement.
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1 Introduction

Traffic simulation is needed for estimation, optimization, prediction and un-
derstanding of vehicular or pedestrian traffic [1]. For example, it can help city
planners evaluate the safety level in any proposed urban structure. However,
the case of mixed traffic is more challenging than single mode traffic due to the
higher complexity in the interactions between the different modes (e.g. vehicles,
pedestrians, or cyclists).

Many deep learning models for mixed traffic prediction was proposed in the
literature [2–5]. Although they provide low errors for many traffic datasets [6–8],
they still lack a direct and accurate way to provide explanations of their predic-
tions. This is due to the complexity and the size of their network architecture,
which make the task of interpreting the output based on the input more difficult.

These interpretations are needed in traffic simulation programs because the
simulation output is only the trajectories of the different agents in the traffic
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area (The agent represents here the traffic entity model used in the simulation).
For example, if the simulation shows that a pedestrian stops at the edge of a
road while some cars are passing by, then there’s no way to tell if the pedestrian
is waiting for the cars or if he is just turning to change his direction. To be sure
of the reason, the output should be linked in a meaningful way to the input.

The need for generating interpretations is also present in another field, namely,
self-driving cars [9]. One important use case is to explain the software logic which
led to an accident. It is also noted that traffic prediction modules are used as
part of the self-driving cars software [10], therefore the same need for interpreta-
tion is present for these modules. However, the topic of interpretation in traffic
prediction [11] did not receive as much attention as in the case of self-driving
cars [12, 13].

An important point to consider when designing the traffic agent model is
matching the model’s input and output with the real input and output of the
traffic participant. Therefore, a model is proposed here where the output is
determined using only the current input, thus fulfilling the Markov property. The
expected result is getting clear and meaningful saliency maps. These maps are
grayscale images highlighting the highest influencing regions of the input, which
contributed towards the prediction. Although, this isn’t a full interpretation, it
still provides insights into the model reasoning process.

After training this model on the mixed traffic datasets, the evaluation is done
with respect to the accuracy of its predictions, and by analysing a representative
set of examples and showing its corresponding saliency maps.

The paper contribution is in proposing a model architecture capable of pre-
dicting realistic waypoints for the traffic entity and at the same time generating
saliency maps with insights into the model inner reasoning.

In the next section, a review of deep learning traffic models and of visual
explanation methods is presented. After that, a perspective on a multi-agent
implementation of the model is shown. Section 3 presents the neural network
architecture, as well as the implemented explanation method. The results in
quantitative way, and a set of visual explanatory saliency maps are shown in
Section 4. These results are discussed and general remarks are made in Section
5. Finally, Section 6 concludes this paper with an overview of the contribution.

2 Related Work

In the following, a review of a number of important papers in the field of mixed
traffic prediction, followed by a review of the most suitable saliency map extrac-
tion methods are presented. Finally, a multi-agent prospective of implementing
this model is discussed.

2.1 Mixed Traffic Prediction Methods

In the topic of mixed traffic models, there are numerous available methods.
Some depend on rule-based methods [14, 1], while others use black box deep
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learning approach [2, 3, 5]. The latter category showed lower prediction errors in
many traffic datasets [7, 8, 6]. However, this accuracy came at the cost of a more
complex structure, bigger size of networks, and eventually lower explainability.

One of the first deep learning models with good accuracy is Social-LSTM
[2]. This method uses a social pooling layer where the vectors of different Long
Short-Term Memory (LSTM) networks (each one correspond to a nearby traffic
participant) is taken to predict the agent future trajectory.

Other later work [3] employed Generative Adversarial Network (GAN) ar-
chitectures. It depended on random sampling to generate multiple plausible tra-
jectories. Variational Auto-encoders Architecture (VAE) was used as well [15]
where a random sampling step is also performed. However, in these two cases
(GAN and VAE) the output is dependent on random factor which cannot be
explained.

Recently the work in [16], used Inverse Reinforcement Learning network as
a first part to predict the coarse goal and trajectory, and then other recurrent
networks with attention layers were used to get the finer trajectory.

In order to implement a deep learning model for mixed traffic modelling
and simulation with less complexity and with memoryless architecture, a direct
architecture of successive Convolutional Neural Network (CNN) layers is adopted
here. This will make the generated saliency maps more meaningful. Otherwise,
if an architecture with LSTM (which contains a memory) or with GAN (where
a random sampling step is done) is used, the saliency maps will be affected by
other random or previous input values, not just the current agent input.

Some other previous methods did use similar architecture of successive CNN
layers. One example is [17], where the input is a group of RGB images and the
output is flattened to form a group of vectors representing multiple plausible
paths. Another paper is Y-Net [5], where a U-Net architecture is used to predict
the pedestrians trajectories and goals, with an input consisting of the scene
image and the previous trajectory of the agent. However, the work here, has a
different shape of output and input, targeted to make the process of generating
the output more transparent.

2.2 Saliency Maps Extraction Methods

For the network architecture proposed here, a number of suitable methods for
saliency maps extraction are reviewed in the following.

Attention maps [18] are heatmaps generated using an additional layer added
at the beginning of the network, and trained with it. This layer is multiplied with
its input, in inference time, in order to maximize the effect of the important areas
while minimizing the effect of other areas in the input.

The Visual Backprop [13] method depends on the usage of the most in-
fluencing information found in the higher layers, then by alternating between
a deconvolution operation and element-wise multiplication with the activation
matrix of the previous layer, moving from the output towards the input, it can
link the output with the input as shown in Figure 1, taken from [13]. The end
result is a grayscale image of the most salient parts of the input.
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Recently the work in [12], called attentional bottleneck, proposes the usage
of an attention layer while fusing the input into a smaller layer where the data
is forced into smaller size making the heatmap focuse more on the most salient
parts of the input.

All of the previous methods can generate visual explanations in the form of
heatmaps. In this work, the method of visual backprob is selected to generate the
maps, due to its suitability to the architecture. For instance, it was implemented
with the similar architecture of PilotNet [19] .

In the field of traffic prediction, previous attempts to generate visual expla-
nations were done. One example, is the paper in [4] where an attention layer
is used to get saliency maps. The result highlighted the traversability parts of
the scene. Another work [11] used a Layer-wise Relevance Propagation (LRP)
[20] method to assign a percentage to each agent in the scene representing its
influence on the prediction output. These two methods reported some benefits
of applying post-hoc explanation methods to the traffic prediction models.

Fig. 1. VisualBackProp explanation method workflow (taken from [13] page 4703)

Fig. 2. Overview of the behaviour cloning approach for traffic modelling
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2.3 Multi-agent Perspective of Mixed Traffic Modelling

The problem of mixed traffic modelling is a multi-agent problem by nature,
where different agent types should be represented by different types of mod-
els. Additionally, each model should be customizable in order to represent the
different agent attributes on microscopic level.

In the work here, the goal is to mimic the single traffic agent behavior,
by presenting the problem as states to actions mapping. All the traffic types
(pedestrians, cyclists and cars) are using the same model which has a multi-heads
output, as shown in Figure 3, so each output branch can become specialized in
a particular traffic type. Therefore, in principle, the model can be used in multi-
agent simulation software such as SUMO [21], or M3 [22] to drive the agents,
but each output branch should be trained only on particular agent type.

3 Method

An overview of the proposed method of using behavior cloning in the problem
of microscopic mixed traffic modelling is shown in Figure 2

Behavior cloning is a supervised learning method implemented within MDP
settings, where an agent model is supposed to imitate the behaviour of the expert
(usually human) using the expert demonstrations as the training data [23].

The state is represented in several top-view images of the last eight step
of the agent. Position, velocity, environment and destination are represented in
those images.

The network architecture, as shown in Figure 3, consists of successive CNN
layers with relu activation functions but softmax activation function for the last
layer. The input is several RGB and grayscale images, specifically, one RGB
image at the start, six grayscale images in the middle and a last RGB image at
the end. They form together the single three dimensional input array.

The input is taken as bird’s eye view from Stanford Drone Dataset [6]. The
agent is always at the same position in the images coordinates, and it is color-
coded as shown in Figure 4 at the right. The green box is a pedestrian, the blue
box is a cyclist and the red box is a vehicle.

The standard prediction and trajectory history times for this dataset, as used
in many other works [24, 4, 5], are 3600 and 2400 milliseconds respectively.

As shown also in Figure 3, the input step 8 image contains a yellow dot
representing an approximate future position of the agent, i.e. the destination. If
the destination fell outside the image borders, then it will not be added. This
means that the model is trained on mixed examples, some with destination and
others without.

The output has twelve grayscale images, representing the agent probability
of being in a given position for the respective twelve steps. This is similar to the
output format used in [10]. In other words, the (x,y) coordinate of the predicted
future position is encoded in 2D array as a peak value.
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The nature of the trajectory prediction problem is not deterministic [5]. This
means that there isn’t one possible correct prediction but many plausible out-
puts. To represent this feature, different works used different approaches, for
example with generative architecture [3], variational auto-encoders [15], or multi
head architecture [17].

In this work a multi-head output is implemented, as shown in Figure 3. The
exact number of output paths for Stanford drone dataset is either 20 or 5 based
on the standard split used in other works [24].

Fig. 3. Network architecture

After the training phase, the predictions are calculated from the model for
the test split of the dataset. Simultaneously the explanatory saliency maps are
generated for each output using the visual backprop method.

Small modifications are done here on top of visual backprop method. Namely,
for each activation layer and before performing the multiplication operation, the
layer’s values are normalized to the range (0-1), and a histogram equalization
step is performed on the last heatmap corresponding to the input.

4 Experimental Evaluation

The result of training the network for single, 5 and 20 modes on Stanford Dataset
is shown in Table 1 where the errors are in pixels, namely the Average Displace-
ment Error (ADE), and Final Displacement Error (FDE).

The mode is the term used in many other papers [17, 25, 16] to indicate the
number of plausible paths in the model output generated for a single agent state.

The saliency maps examples were chosen according to two criteria, in order
to show a representative set of examples. First criterion, the ADE should be
lower than twelve pixels for all the examples. Second criterion, these examples
should be crowded, and diverse with respect to the agents’ types.
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Table 1. The errors in pixels for different numbers of modes on the Stanford drone
dataset along with the result of other papers

Case ADE
(pixel)

FDE
(pixel)

Epochs of
training

BC1 - 1 mode 30 450 111

BC - 5 modes 21.99 211.78 30

BC - 20 modes 17.99 273.9 36

BC - 20 modes (no destination) 29.47 317.25 36

Social GAN 2 [3] (20 modes) 27.23 41.44 -

CF-VAE [15] (20 modes) 12.60 22.30 -

Y-Net 2 [5] (20 modes) 7.85 11.85 -

*1: Behaviour Cloning (Ours)

*2: it predicts only pedestrians movement

The real and synthetic examples are shown in Figures (4 to 15), where the
black path represents the ground truth, the pink paths represent the predictions,
and the blue path represent the past trajectory.

Each figure from the dataset contains five images. First image on the left
is the last input image. The next one is the saliency map from the model, and
the third is the result of element-wise multiplying the first two images. The
fourth and fifth images are the ground truth trajectory and the closest predicted
waypoints to it respectively, represented as small white boxes in the path.

The following examples are taken from the test set of the dataset and pre-
sented here along with their saliency maps corresponding to the last input image
and its associated prediction in Figures 4 to 12.

Figures 4 to 7 belong to the same traffic situation, but with output for net-
works of 20, 5 and single modes as well as 20 modes without destination, respec-
tively. The most accurate output is for the 20 modes with destination as shown
in Figure 4, where the cyclists are avoided and blackened out in the saliency
maps, but a path very close to the ground truth is taken.

The five-modes network predicted a path near the ground truth also, as shown
in figure 5 and the same is true for the one-mode output. Without destination,
the network also excludes the area next to the cyclists.

In Figures 8 and 9, the pedestrian wants to cross between two cyclists. The
saliency maps shows a thin line between the pedestrian and the destination in
both of the two networks. However, in both of them there is a jump in the best
output prediction which is clearly due to the closeness of the passing by cyclists.

Figures 10 and 11 are for two separate examples. Here it is clear also that
not only the nearby cyclists’ and pedestrians’ rectangles are blackened out, but
also the road in front of them where they may pass in the future.
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Fig. 4. Example 1 - 20 modes output

Fig. 5. Example 1 - 5 modes output

Fig. 6. Example 1 - single mode output

Fig. 7. Example 1 - 20 modes output without destination

Fig. 8. Example 2 - 20 modes output

Fig. 9. Example 2 - 5 modes output
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Fig. 10. Example 3 - 20 modes output

Fig. 11. Example 4 - 20 modes output

Fig. 12. Example 5 - 20 modes without destination

Figure 12 shows that even without destination the output is in the direction
of the ground truth, and as the saliency maps shows, big black areas are in the
way because of the cyclists.

Figure 13 is a synthetic example, where three pedestrians try to cross the road
and a fast car has just passed them. The prediction is a jump to the sidewalk,
and a few points suggest a movement to the left towards the destination. Here
the sidewalk is highlighted along with the car and the pedestrians rectangles.
Figure 14 also shows a focus on the sidewalk as well as further movement in
the direction of the sidewalk. Figure 15, the model correctly avoided the cyclists
and tried to take a turn behind the obstacle to the destination. The agent, the
obstacle and the destination are all highlighted.

5 Discussion

The error values were slightly higher for the model here than some other methods
shown in Table 1, even with destination. However, the model accuracy is still
reasonable, for example, in the case of 20 modes with destination, the ADE
error value is around 18 pixels which is in most cases less than the width of
the agent’s bounding box. Additionally, the extraction of meaningful saliency
maps should be achievable with this level of accuracy. The network does the
prediction by detecting patterns of agents positions and environment structure
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Fig. 13. Example 6 - synthetic example 20 modes

Fig. 14. Example 7 - synthetic example 5 modes

Fig. 15. Example 8 - synthetic example single mode

in the input images. These patterns should be highlighted in the saliency maps,
and by analyzing these maps, it is noted that:

– They highlight the agent of interest, the yellow dot of destination and the
edges of the road and sidewalks

– They blacken out the other faster agents in the vicinity of the main agent
and the area in their movement direction.

In general, it is easy for the network to detect the agent, because of its main
color and position. It is also easy to detect the yellow destination point. The
next step for the network is finding the correct path towards the destination. If
the road is clear, it will be a straight path and it will be highlighted in the map.
However, if other agents, like Figure 8, or some obstacles like Figure 15, were in
the way, then a maneuver should be done, and the salience map will blacken out
these parts of agents or obstacles.

The edge of the road are important features to learn for the model, for
example in Figure 8, it is noted that the edge is tilted, the prediction path
is also parallel to that, because it’s more likely to walk in the direction of, or
perpendicular to, the road direction than in other ways. This is also shown in
Figure 4, when the pedestrian wants to cross the road.
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6 Conclusion

In this work, a model for mixed traffic modelling is trained and tested on Stanford
Drone Dataset for three agent types (cars, cyclists and pedestrians). This model
formulated the problem in MDP framework, mapping states to actions using
behavior cloning model trained with supervised learning from traffic data.

A post-hoc explanation method was used to get explanatory saliency maps
for the predictions. These maps showed that the model attended to the agent,
the destination and the possible areas to plan the predicted path, while avoiding
collision with other agents and obstacles. The edges of the roads and sidewalks,
which define the general direction of movement were also highlighted in consis-
tency with the predictions.

Therefore, these maps can provide more information of why some area was
avoided and why some direction was taken. These information is useful in the
case of a simulation or in the case of automatic analysis of real-world dataset.

As a future work, a method for assigning each output branch of the model to
specific traffic participant type should be investigated in order to use the model
to drive different agents in a multi-agent based simulation framework.
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