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Abstract. During an epidemic, it can be difficult to get an estimate
of the actual number of people infected at any given time. This is due
to multiple reasons, including some cases being asymptomatic and sick
people not seeking healthcare for mild symptoms, among others. Large
scale random sampling of the population for testing can be expensive,
especially in the early stages of an epidemic, when tests are scarce. Here
we show how an adaptive prevalence testing method can be developed to
obtain a good estimate of the disease burden by learning to intelligently
allocate a small number of tests for random testing of the population.
Our approach uses a combination of an agent-based simulation and deep
learning in an active sensing paradigm. We show that it is possible to
get a good state estimate with relatively minimal prevalence testing,
and that the trained system adapts quickly and performs well even if the
disease parameters change.

Keywords: Computational Epidemiology · Neural Networks · Agent-
based Modeling and Simulation · Active Sensing.

1 Introduction

Our goal is to get a good estimate of the burden of disease, i.e., the actual
number of infections, as an epidemic progresses through a population. In this
paper, we will refer to this as the epidemic state estimation problem.

This is a hard problem because a large fraction of cases can be asymptomatic,
as in the case of COVID-19, where up to ∼40% of cases are believed to be
asymptomatic [10]. In certain scenarios, if enough tests are available, prevalence
testing is done to track the progression of the disease through the population,
where a random sample of the population is tested at regular intervals, regardless
of whether they are symptomatic [7]. This is easier to do in controlled settings,
such as universities, army bases, etc., where the population can be required to go
to a testing location [14]. However, prevalence testing of the general population
is much harder, so other approaches are used, such as targeted testing [3] and
contact tracing [1, 8]. Alternatively, attempts are made to estimate the burden of
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the disease from available testing data in combination with hospital visit data,
mortality data, and more [6].

In this work, we show that an adaptive approach to prevalence testing can be
effective. Informally, our problem is to estimate the number of infections in each
of N regions over time, by intelligently choosing the number of random tests
done in each region on each day. The main idea behind our approach is to use a
very detailed, data-driven agent-based model to train a recurrent neural network
to solve this problem. Traditionally, state estimation of a dynamical system is
done using filtering. Particle filters are a popular choice when the system is non-
Gaussian. Particle Filter Recurrent Neural Networks (PF-RNNs) have recently
been developed to combine filtering with deep learning [11], which allows the
underlying dynamical system model to be learned from data. This line of work
assumes a fixed observation process, which provides information about the state
of the system at each time step, but is not under the control of the modeler/state
estimator.

In our case, in contrast, the state estimator has to choose the observations
that are made, by choosing how many tests to assign to each region at each
time step. This is known as active sensing [16]. Our main contribution, thus, is
an innovative application of an (existing) agent-based model: to train an active
sensing system for doing epidemic state estimation. While machine learning,
filtering methods, and agent-based models have been combined in various ways
recently, such as learning emulators [2], doing model comparison [15], and also
doing state estimation [9, 12] we believe this is the first application for active
sensing.

The rest of this paper is organized as follows. We give a precise problem
formulation in Section 2. After that we present the relevant background on fil-
tering, PF-RNNs, active learning, and active sensing. Then, in Section 4, we
present our approach, which uses an agent-based model to train a PF-RNN in
an active sensing setting. This is followed by a detailed description of the data
and agent-based model used here (Section 4.2). Then we present a series of exper-
iments with simulated epidemics in twelve counties of the US state of Virginia,
where we evaluate the performance of our approach. We end with a discussion
of related work and possible extensions.

2 Problem Formulation

Suppose that there is an infectious disease spreading through the population
of a region. For simplicity, at present we assume that the population is naïve,
i.e., that no one has prior immunity to the disease. We also assume that there
isn’t a vaccine available yet. This describes the early stages of the COVID-19
epidemic reasonably well (first wave). Our approach is general enough that these
assumptions aren’t necessary, as we discuss in the Conclusion (Section 7).

Epidemiologists generally divide a population into compartments, such as
Susceptible, Exposed, Infectious, Recovered, etc., when modeling the progres-
sion of a disease through a population. However, the main statistic of interest
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at any time is the proportion of the population that is currently infectious, as
this guides intervention policy (mask mandates, school closures, etc.) as well as
planning for healthcare resources.

In practice, it helps to be able to estimate disease prevalence in sub-regions
within larger regions, e.g., in individual counties within a state. So, for generality,
we define the true state of the epidemic at time t to be, yt = [y0,t, y1,t, . . . , yN,t],
where yi,t is the proportion of the population in (sub-)region i that is infectious
at time t. N is the total number of regions. Let xt be our estimate of yt, where
xt is an N -dimensional vector analogous to yt. Note that yt is never directly
observed.

The system has to assign a vector of numbers of tests, nt = [n0,t, n1,t, . . . , nN,t],
at each time step. We assume that we have a budget on tests, such that 1 ≤
ni,t ≤ M . In words, the system has to assign at least one test to each region at
each time step (for reasons explained in Section 4) and can assign a maximum
of M tests to each region at each time step.

Prevalence testing is expensive because it requires testing a random sample
of the population, which means sending testers in the field to find the randomly
selected people and test them. This requires much more time and effort than, e.g.,
opportunistically testing symptomatic people who come into healthcare facilities.
However, it has the advantage of being unbiased. Our objective, therefore, is to
minimize both the number of tests used and the error in the state estimate:

R(t) = |yt − xt|+ nt, (1)

where | · | is an appropriate vector norm, such as the L2 norm.

3 Background

To estimate the unobserved underlying state of a dynamical system at time t,
filtering methods maintain a posterior distribution over the state, given the prior
estimate at time t − 1 and the observation at time t. This distribution is also
known as the belief state, b(yt), where yt is the state at time t. In Bayes filtering,
the belief state is updated in two steps. In the prediction step, the previous belief
state is used to create a predicted belief state,

b̂(yt) =

∫
p(yt|yt−1)b(yt−1)dyt−1. (2)

In the correction step, an observation model is used to convert the predicted
belief state into a “corrected” belief state at time step t,

b(yt) = µp(ot|yt)b̂(yt), (3)

where ot is the observation at time t and µ is a normalization factor. This class of
models is also known as predictor-corrector filters due to the two step nature of
this approach. The Kalman filter is the classic example, which assumes Gaussian
distributions and linear dynamics.
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Fig. 1: The PF-RNN takes the previous state estimate, xt, as input, along with
results of the tests (proportion positive), zt, in the previous round. It has to
generate a prediction of the epidemic state for the next time step, xt+1, as well
as the number of tests to be assigned to each region (county or health district),
nt+1. The environment converts tests to test results, zt+1. The process continues
with xt+1 and zt+1 forming the input for the next time step.

3.1 Particle Filtering

Particle filtering [5] is an approximate approach to Bayes filters, where the dis-
tributions are maintained non-parametrically as a collection of particles {yi}t
with associated weights {wi}t. This allows particle filters to be applied in very
general settings, as this method makes no assumptions about the distribution
over states. In the prediction step, each particle is sampled from the transition
distribution,

yit ∼ p(yt|yit−1). (4)

The weights are updated using the observations and the observation distribution,

wi
t = µp(ot|yt)wi

t−1. (5)

In particle filtering, this is followed by an additional resampling step, where
the particles are resampled with probabilities proportional to their weights. The
weights of these resampled particles are set to 1/K, where K is the total number
of particles. This is done to avoid an empirical problem of “particle degeneracy”,
where the weights of many particles can rapidly fall to be close to zero, which
causes the particle set to perform poorly at estimating the belief distribution.

Filtering methods generally assume that two things are known: the transition
model p(yt|yt−1) and the observation model p(ot|yt). In practice, this may often
not be the case (as is also true in our application).

3.2 Particle Filter Recurrent Neural Networks

A recently developed method to address model learning along with state esti-
mation is the Particle Filter Recurrent Neural Network (PF-RNN) [11], which
combines particle filtering with recurrent neural networks (RNN), specifically
Long Short-Term Memory (LSTM) or Gated Recurrent Unit (GRU) networks.
This combination brings together the powerful time series learning and predic-
tion capabilities of RNNs with the capability of particle filters to maintain an
estimate of a time-dependent state with uncertainty. In particular, the PF-RNN
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maintains a collection of hidden layer particles, {hi, wi}t, and computes the out-
put as a function of the average or expectation of the particles, f(

∑
i h

i
tw

i
t).

The PF-RNN functions similarly to traditional RNNs, although they differ on
input information. Where RNNs are given historical state information to inform
their prediction; the PF-RNN utilizes the previous state estimates created by
particle filtering as input information. During training, the PF-RNN learns to
approximate the transition model and the observation model through end-to-
end discriminative training. An additional advantage of the PF-RNN is that the
output f(

∑
i h

i
tw

i
t) can be a task-specific control output (not just an estimate of

the system state). We make use of this feature in our application for assigning
tests to regions.

3.3 Active Sensing

This is essentially a reinforcement learning problem, where the actions are sens-
ing actions (i.e., they do not change the environment) and are costly, so must
be optimized to maximize some reward [16]. As in the case of filtering, the true
state of the environment is never observed directly, so active sensing also oper-
ates on belief states. Since the goal is to choose actions so as to come up with
the best estimate of the environmental state while minimizing cost, the reward
R(a, y) of action a in state y is generally specified as a combination of expected
information gain and the cost.

We now describe how we bring together these ideas and couple them with an
agent-based model for our problem.

4 Approach

The general idea for the approach is shown in Figure 1. Continuing with our
notation from Section 2, we assume that the environment transforms the tests
into test results, giving us a vector zt = [z0,t, z1,t, . . . , zN,t], where each element
corresponds to the proportion of tests assigned to that region that turn out
positive (indicating an infected person). In this work, we use an agent-based
model (ABM) for the environment. The idea is that we can generate many
realistic simulated epidemic instances using a very detailed data-driven ABM,
as described in Section 4.2, which can be used to train the PF-RNN on the
underlying epidemic dynamics (i.e., the transition model), and we can use the
ABM itself to provide the results of prevalence testing (i.e., to map nt to zt as
shown in Figure 1). However, we would like the learned model to be applicable
to a real-world setting, e.g., to be used when a new epidemic of the same kind
(but with different transmission parameters) appears, so the true epidemic state
cannot be used for training.

Therefore, instead of using Equation 1 directly as our objective function for
training, we change it to,

r(t) := |xt − zt|+ η|nt|+H(ht), (6)
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where H(ht) is the entropy of the hidden state particles in the PF-RNN. The
intuition is that we wish to have the state estimate match the test results (first
term), while using as few tests as possible (second term), and also minimizing
our uncertainty about the state (third term). The entropy term is optional and
we present results with and without this term in Section 6. η is a constant that
lets us adjust the relative importance of accuracy and the numbers of tests used.
To avoid the degenerate solution where the system assigns no tests and predicts
that no one is infected, we constrain the system to assign at least one test to
every region at each time step.

4.1 PF-RNN

Since the original PF-RNN code is designed for use with image data, we have
adapted it to work with vectors as needed for our application. Our modified
version of PF-RNNs works in exactly the same way for training and will be
made available via GitHub once the paper is accepted.

We did simple hyperparameter optimization to determine the best learning
rate, the final value being 5× 10−5. We also tried various values for the number
of particles and the number of hidden layer nodes and determined the optimal
number of particles to be 64, with a hidden layer of 256 nodes.

For the actual PF-RNN training, following the approach of Ma et al. [11], we
used a modified version of Equation 6 as the objective function:

a(t) :=

N∑
n=1

(xt − zt) + η

N∑
n=1

(pt) (7)

b(t) :=

N∑
n=1

(xt − zt)
2 + η

N∑
n=1

(pt)
2 (8)

â(t) :=

N∑
n=1

(x̂t − zt) + η

N∑
n=1

(p̂t) (9)

b̂(t) :=

N∑
n=1

(x̂t − zt) + η

N∑
n=1

(p̂t) (10)

r(t) := αa(t) + βb(t) + γ(log â(t) + b̂(t)) (11)

The first of these equations a(t) represent the mean error of the predicted
proportion, and the tested proportion; with a secondary term representing the
number of tests assigned. The intuition is that we wish to have the state estimate
match the test results (first term), while using as few tests as possible (second
term).

∑N
n=1(x̂t − zt) is in the range of 0 - 1, however the testing component

is limited by the total number of tests, therefore can be far greater than 1. To
counter act this, the testing error was multiplied by discount factor η which
changed the range to 0 - 1. a(t) is then added to b(t), which is very similar
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to a(t) although using mean square error. An additional component is added
to the first two functions to minimize the evidence lower bound (ELBO). The
ELBO is utilized to determine the probability that a model is likely to predict,
in this case, the desired output. The method utilized by Ma et al. is also utilized
here, and completes our objective function with the addition of log â(t) + b̂(t)

with constant γ to lessen the impact on the reward. Equations ˆa(t) and ˆb(t) are
equivalent to a(t) and b(t), although in place of the PF-RNN prediction (x),
the average of the hidden particle filter layer for prediction and test assigning
is taken, (x̂) and (p̂) respectively. This process was shown to be more robust to
noise and variation than those using simply a mean square error reward [11].

Finally, calculating the particle filter entropy is not straightforward due to
the fact that a discrete set of particles is used to approximate a continuous
probability distribution [4]. However, we do not need to calculate the entropy
precisely. Since variance is monotonically related to entropy, we add the variance
of the particles as an additional term to the objective function when we wish to
minimize the entropy also.

Next we describe the agent-based model of epidemics used for training. This
consists of two parts: a very detailed and realistic synthetic population of the
region and a high-performance and flexible epidemic simulator that operates on
the synthetic population.

4.2 The Epidemic Simulator

In this work, we made use of EpiHiper [8], which is a high-performance computa-
tional modeling framework supporting epidemic science. The design of EpiHiper
comprises four crucial parts (i) a labeled, time-varying social contact network
over which contagions spread, (ii) fully customizable disease models capturing
disease transmission between hosts as well as within-host disease progression;
(iii) user-programmable interventions covering both pharmaceutical and non-
pharmaceutical ones; and (iv) the discrete time, parallel simulator designed to
take full advantage of modern high performance computing (HPC) hardware.
This modeling framework has been used extensively by its creators throughout
the ongoing COVID-19 pandemic by directly supporting planning and response
efforts to support state, local, and federal authorities.

Disease model assumptions: It is assumed that (i) propensities for a person
are independent across contact configurations, and (ii) that during any time step
no person can change their health state. The first assumption is quite common
and not unreasonable for the contact networks that are used. Violations of the
second assumption can always be accommodated by reducing the size of the
time step. Its real purpose is to ensure order invariance of contacts within a
time step, thus providing the required guarantee for algorithm correctness.

To mathematically describe the disease transmission model, consider a situa-
tion where a susceptible person P is in contact with infectious person P ′. Looking
at the pair (P ′, P ), we combine the state susceptibility and state infectivity of
their respective health states Xk and Xi with the infectivity scaling factor of P ′
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and the susceptibility scaling factor of P to form the propensity associated with
the contact configuration Ti,j,k = T (Xi, Xj , Xk) for the potential transition of
the health state of person P to Xj as:

ρ(P, P ′, Ti,j,k, e) =
[
T ·τ

]
×we×αe×

[
βs(P ) ·σ(Xi)

]
×
[
βi(P

′) · ι(Xk)
]
×ω(Ti,j,k)

(12)
Here, T is the duration of contact for the edge e = (P ′, P, w, α, T ), w is an
edge weight, and α is a Boolean value indicating whether or not the edge is
active (e.g., not disabled because of an ongoing school closure). A complete list
of parameters and notation can be found in Table 1.

Parameter Description
P , P ′ Persons/agents/nodes
Xi Health state i
σ(Xi) Susceptibility of health state Xi

ι(Xi) Infectivity of health state Xi

βσ(P ) Susceptibility scaling factor for
person P

βι(P ) Infectivity scaling factor for
person P

we Weight of edge e = (P, P ′)
αe Flag indicating whether the

edge e is active
T (Xi, Xj , Xk) Contact configuration for a

susceptible transition from Xi

to Xj in the presence of
state Xk

ωi,j,k Transmission weight of contact
configuration T (Xi, Xj , Xk)

τ Transmissibility
ρ(P, P ′, Ti,j,k, e) Contact propensity

Table 1: EpiHiper core model parameters.

Data sets for train-
ing and validation pur-
poses have been created
by running EpiHiper with
an age stratified COVID-
19 disease model. We
consider five age groups
(Preschool 0-4 years, Stu-
dents 5-17, Adults 18-
49, Older Adults 50-64,
and Seniors 65+). The
simulation was run for
the entire state of Vir-
ginia. The initial ten
cases of the outbreak
where restricted to Lee
County (FIPS: 51105).
To evaluate different dis-
ease dynamics we created
multiple trajectories with
transmissibility values in
the range of τ (0.025,
0.095). For each transmis-
sibility value, 50 trajecto-
ries were created for each.
All of the other parame-
ters were kept fixed at values already set in EpiHiper.

5 Experiments

To evaluate the performance of our approach, we conducted a variety of exper-
iments to determine its capabilities; specifically, modeling the pandemic within
and across counties and testing strategy. Experiments were conducted on sim-
ulated trajectories of pandemic spread in 12 counties in the state of Virginia.
The trajectories were extracted from EpiHiper runs for the full Virginia pop-
ulation so that the relative progression of the epidemic in the chosen counties
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is meaningful. These counties were selected for proximity, population size, and
population density.

Additionally we tested the viability of modeling infection rates with previ-
ously unseen spread parameters. Each PF-RNN was trained for 500 epochs, each
lasting approximately 180 ticks (simulated days), with 49 unique trajectories. In
total, 90000+ days of pandemic spread were seen during each training session.
Each experiment was evaluated on a previously unseen trajectory with trans-
missibility τ = 0.055. Performance was assessed based on mean squared error
and total number of tests used. We compared four different training scenarios:

1. No action: In this case, the number of tests assigned to each county was
fixed at 5. The neural network only learned to use the test results in com-
bination with its own prediction at time step t− 1 to estimate the epidemic
state at time t.

2. With action: In this case, the neural network has to generate both the
estimate of the epidemic state at time t and the number of cases to assign
to each region in time step t+ 1.

3. No entropy: This is the same as the previous case, but without the term for
the variance of the set of particles in the objective function. This encourages
the neural network to minimize prediction error without worrying about
minimizing the uncertainty in the prediction.

4. Multi-trajectory: In this case, training was done on a range of transmis-
sibility rates in the range of (0.025 − 0.095) and evaluation was conducted
on a trajectory with an unseen transmissibility value within this range. In
total, 200 trajectories were seen in training, 50 per transmissibility value.
The goal was to evaluate if the trained system can perform well on a new
variant of the epidemic.

6 Results

Our main result is the ROC curve shown in Figure 2. The curve in the figure
corresponds to the average RMSE if a fixed number of tests (the value on the
x-axis) are assigned to each region on each day, and there is no learned model
used to estimate the epidemic state based on the previous day. In other words,
the estimate is generated independently on each day.

In this case, the estimate for each day is simply a draw from a binomial dis-
tribution with probability of success given by the proportion of the population
that is infectious on that day. Thus, as expected, the average RMSE drops expo-
nentially as the number of tests increases. The outcomes of the four experiments
are plotted in the figure as points and there are distinct differences in the RMSE
and numbers of tests for these scenarios.

The ‘multi-trajectory’ scenario has the highest average RMSE, while using
the fewest (3) tests/day on average. The ‘no entropy’ scenario has the lowest
RMSE, while using the most (16) tests/day on average. The ‘with action’ sce-
nario provides the best tradeoff between the two, using only 4 tests/day, while
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Fig. 2: ROC curve showing the trade-off between RMSE and number of tests.

generating the second-lowest average RMSE. The important thing to note over-
all, however, is that all the scenarios use far fewer tests than the independent case
for the same level of error. For instance, for the ‘with action’ scenario, the corre-
sponding point on the curve with the same average RMSE uses ∼120 tests/day,
which is a ∼30x improvement for our method. Even for the ‘multi-trajectory’
case, we see a >10x improvement.

In Figure 3, we show the percent error over time in the epidemic state es-
timate for the ‘with action’ scenario. The average number of tests assigned on
each day are also plotted. We see that the error is never more than ±10%.

Fig. 3: PF-RNN prediction and testing strategy on 12 individual counties.

We note that we also tried other RNNs, such as LSTMs, but they performed
similarly to the PF-RNN without entropy.
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7 Conclusion

This study demonstrated the viability and success in implementing recurrent
neural network algorithms in both predicting epidemic prevalence and optimal
testing strategy. In total, over 300,000 days of simulated epidemics were trained
and evaluated on. We evaluate the performance of PF-RNN on predicting preva-
lence, assigning tests, and transfer learning capabilities. Each model evaluated
was accurately able to estimate infection rates in a 12 county area; minimizing
mean squared error while testing less than 0.1 % of the population.

A number of extensions are possible to improve the applicability of this ap-
proach. In particular, the epidemic simulator is capable of modeling a range
of interventions, so our approach could be trained on scenarios where different
interventions are applied at different times. Other simulators can also be used,
for examples ones that model human behavior and decision-making in greater
detail [13]. Vaccination can also be incorporated into these simulators, providing
another layer of realism and extending the duration for which our method would
be applicable. The same is true of scaling to larger regions, as the simulators
are designed to be high performance, and easily scaling to populations of several
millions of agents.

Beyond the straightforward extensions that increase the applicability and
realism of our approach, there are a few methodological directions of research
also. In particular, we can explore dynamically varying the parameter η, which is
essentially equivalent to the exploration-exploitation trade-off in active sensing
since it controls the relative importance of cost vs. accuracy. This might be useful
in triggering additional sensing when evidence suggests the emergence of new
disease variants, for example. Going further, we can explore a control setting,
where the goal is not just epidemic state estimation, but also containment.

In the world of post COVID-19, epidemic strategy should be in constant con-
sideration to prevent another large scale pandemic. This study is a step towards
more efficient AI-supported decision making; preventing the next epidemic from
becoming a pandemic.
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