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Abstract. Genetic programming evolves computer programs to solve problems while showing promising av-
enues for discovering complex behavioural rules in agent-based models (ABMs). Since existing efforts to learn
ABM structures in the field of Inverse Generative Social Science (IGSS) have concentrated on combining
domain-specific primitives for deterministic rule generation, this paper evolves interpretable agent logic from
scratch comprised of stochastic primitives for decision tree nodes. We show the adaptability of our approach by
applying it to discover models representing human behaviour targeting data generated from existing conceptual
models. Our results show that the IGSS can identify the same model as the reference model to be the most
fitted rule with pseudo-truth data and other evolved solutions that closely resemble the data. Additionally,
permutation accuracy proves that random selection is the most important comparator primitive, where ran-
dom selection based on similarity by age was the sole variable determining exit selection for data collection.
Contrary to this original rule, the selection of the closest exit and similarity with gender are found to be more
important terminal primitives (factors) than the similarity by age. Our study illustrates the capacity of genetic
programming to extract understandable decision rules from data for agents in ABMs that simulate behaviours
across domains.

Keywords: Genetic Programming, Agent-Based Modelling, Inverse Generative Social Science, Pedestrian Be-
haviour

1 Introduction

In the field of agent-based simulations and generative social science, it is crucial to specify all possible intra-
agent equations in order to create accurate models of social systems that can replicate actual dynamics to provide
causal inference. This requires a careful understanding of human behavioural dynamics and decision-making pro-
cesses. Agent-based models (ABMs) take a bottom-up approach to modelling systems, with macro-level behaviours
emerging from the interactions of agents operating at the micro-level. While ABMs are capable of capturing the
heterogeneity of human behaviour and providing in-depth analysis of agent interactions, the decisions made by
individual agents are often guided by a predefined set of rules [1, 2]. The formulation of these rules for individual
behaviours typically requires manual effort by the modeller, which can be time-consuming and heavily dependent
on the domain expertise and assumptions. This leads to modeller bias and loss of simulation realism and reduces
the possibility of investigating actual trends [3, 4, 5].

To address this limitation, several approaches, including modelling protocols known as pattern-oriented mod-
elling (POM) and Machine Learning (ML) based simulation methodologies, have been proposed. POM is a technique
that involves testing patterns of different theories by manually creating multiple candidate models to match a real-
world scenario, which can introduce implementation risks and inconsistencies across models. Further, the repetitive
implementation of multiple versions of the model to explore the rule space is laborious and lacks modularisation to
clearly identify the decision-making elements that generate the desired patterns [6, 7]. Beyond simulating potential
macro-level behaviours of complex systems, ABMs offer the ability to work backwards from real-world data, de-
termining lower-level agent rules that reconstruct higher-level observed dynamics [8]. ML, on the other hand, is a
data-driven approach that can enable the reverse implementation of ABM. It uses algorithms to discover patterns
and make predictions based on past experiences. Many machine learning techniques act as black boxes, such as
artificial neural networks, support vector machines, and random forests. Although they are powerful for predic-
tions, these opaque models do not elucidate the decision processes or causal mechanisms that produce their outputs
[9, 10, 11, 12]. They are mainly focused on predictive accuracy rather than interpretation of results. In recent
years, a promising evolutionary approach to addressing this challenge has been the use of genetic programming in
agent-based simulations. Genetic programming, a subset of machine learning, provides a method for automatically
discovering and evolving the rules or mechanisms that govern individual agent behaviour in an ABM [13, 14]. This
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concept of generating rules rather than deductively testing theories to work backwards from data to underlying
data-generating processes in an inductive manner while building explanations from the bottom up is called Inverse
Generative Social Science (IGSS).

This emerging field of IGSS offers a novel approach to model discovery by generating potential explanatory
ABMs for a target phenomenon, as opposed to modelling a singular pattern for micro-behavioural behaviour and
testing its validity as is done in generative social science models [8]. This approach entails treating agent architecture
as an output of the model rather than an input, and utilising machine learning algorithms to discern the rules or
equations governing agent behaviour [15]. However, existing IGSS papers have also focused primarily on evolving
deterministic agent rules and models keeping deterministic nodes in the decision tree [8, 16, 15, 17]. This study
facilitates the development of highly stochastic ABMs properly capturing behavioural stochasticity, for instance,
pedestrian behaviour and movements are inherently stochastic. There is a gap in extending IGSS to search the wider
space of stochastic, not just deterministic, generative models. This paper aims to develop stochastic IGSS using
strongly typed genetic programming to test pedestrian movement and navigation behaviours as the case study.
The most challenging aspect of pedestrian modelling is to capture the stochastic behaviour of pedestrians when
interacting with other individuals. We hypothesise that stochastic IGSS can be a more data-driven and systematic
way to develop stochastic ABMs, such as a pedestrian model, rather than solely relying on predefined rules and
modeller assumptions. This will expand the scope of IGSS into more behaviourally realistic mechanisms driving
empirically observed class of simulation models.

This paper aims to explore the search space of decision trees in IGSS with stochastic nodes. This aim is supported
by using the case study of pedestrian behaviour of people leaving the train station. In Section 2, background infor-
mation on the research area and case study model is introduced in sufficient detail for the subsequent manipulation
of its structure to be understood. Then, in Section 3, an overall process of model discovery is introduced, with a
particular focus on the evolutionary computing tools used to search through the space of model structures. Results
of the model discovery process for the case study are provided in Section 4. Finally, the findings are discussed in
detail in Section 5 with future directions for research on this exciting topic.

2 Background

2.1 Related Work

Pedestrian models that leverage ABM have become an invaluable tool for analysing and predicting human move-
ment and crowding behaviours for domains ranging from architecture and urban planning to emergency response
and pandemic modelling [18, 19]. Such models capture pedestrian navigation at the individual level by specifying
simple movement rules, allowing complex system-level dynamics with collision, exit selection, and congestion to
emerge [20]. Most pedestrian ABMs rely on hand-crafted deterministic or probabilistic rules dictating acceleration,
heading changes, collision avoidance, route choices, etc. [21]. A significant advances have been made in pedestrian
modelling, while exploring the integration of stochastic elements into these agent-based behavioural decision-making
systems. Early studies demonstrated adding stochastic components for navigation decisions or wait times at bot-
tlenecks/intersections as it can improve model realism [22]. Recent empirical findings on crowd disasters highlight
complex dynamics between stochastic panic behaviours and peer influence effects. This approach has been applied
in various ways, such as in simulating counter flow through bottlenecks [23], enhancing wayfinding in pedestrian
simulation [24], developing a stochastic transition model for pedestrian dynamics [25], and developing utility thresh-
old model of herding-panic behaviour in evacuation [26]. However, most prevailing models take narrow approaches,
modifying one or two isolated rules rather than searching the possibility space of stochastic pedestrian mechanisms
[27]. This generally lacks an empirical grounding for their stipulated behavioural mechanisms [28].

The generative social sciences paradigm argues that explaining macro-scale societal patterns requires modelling
the micro-level mechanisms by which they arise from individual interactions [29]. Agent-based modelling is axiomatic
to this approach. Recently, the vision for “Inverse Generative Social Science” (IGSS) has been articulated, applying
evolutionary computation to automate the discovery of generative ABMs. IGSS employs ML and other compu-
tational techniques to uncover the underlying mechanisms that give rise to social phenomena [30]. Evolutionary
algorithms have gained traction in recent decades for automated scientific discovery across disciplines. Methodolo-
gies ranging from genetic programming to classifiers leverage Darwinian selection to evolve free-form equations,
simulations, or programs according to fitness objectives [31, 32].

Existing IGSS research demonstrations have focused on matching observable patterns in residential segregation,
alcohol consumption, flocking dynamics and other domains. [8, 33, 16, 34] proposed a promising framework for
IGSS; Evolutionary Model Discovery (EMD), for automated discovery of explanatory individual-level mechanisms



behind emergent social phenomena using genetic programming. They evolved agent decision rules to generate mixed
patterns of residential segregation and integration in an ABM. Rules were represented as mathematical equations
combining hypothesised causal factors like racial bias and isolation. A genetic program optimised combinations of
these factors over generations to maximise a metric indicating mixed patterns. [35] applied EMD for automated rule
discovery in agent-based models of irrigation cooperation dilemmas. They define micro-level decision factors and
use genetic programming to search for accurate behavioural theories, evaluating predictive fit to experimental data.
[15, 36, 37] has advanced the application of multi-objective evolutionary computation for the automated discovery of
agent-based model structures in IGSS. Using multi-objective grammar-based genetic programming (MOGGP), they
treat social science theories as modular components that are combined in different arrangements to match historical
targets on alcohol consumption trends. Trade-offs emerge between model fit, complexity, and theoretical coherence.
Their approach searches over and tests alternative formulations of theories like social norms and social roles,
promoting theoretical diversity. Model structures balance explanatory power against interpretability, with the goal
of generating empirically grounded mechanistic explanations that can inform policy. [38] demonstrated an approach
to automatically learn interpretable symbolic agent-based models from basic mathematical building blocks using
genetic programming. Without relying on domain knowledge, they evolve agent update rules as mathematical/logical
functions that accurately replicate target flocking and opinion dynamics patterns.

Prior notable works in IGSS have focused on evolving deterministic decision rules, whether domain-specific [34]
or based on basic operators [38, 37]. [35] introduced inherent stochasticity by evolving rules with random factor
(terminal comparator). This paper introduces both deterministic and stochastic rules by introducing a random
comparator node other than argmax and argmin nodes to the search space. Agents choose between behavioural
exits deterministically or stochastically based on a probability calculated from distance, crowd and other factors.
While these factors combine deterministically, final exit selection incorporates randomness - probabilistically picking
min, max, or random exit. This explores whether uncertainty in strategy selection, rather than strategy execution,
better explains human decisions. This approach retains the interpretability of distinct rules while capturing un-
predictability. The difference is conceptually subtle - randomness enters from non-systematic switching between
strategic options, not inherent randomness within strategies. But model discovery can shed light on these nuances
to advance generative sufficiency. Comparing mechanisms for embedding stochasticity advances IGSS techniques
for robust, generalisable social explanations.

In summary, stochasticity is critical for accurately representing the variability inherent to pedestrian behaviours.
The emergent vision for IGSS offers newfound promise to automate the discovery of stochastic generative models
across social science domains. However, pioneering applications have only begun targeting simpler deterministic
search spaces (Epstein 2019). This paper’s proposed case study, applying IGSS techniques to induce fully stochastic
pedestrian movement from pseudo-truth data, will help advance the state-of-the-art. The expected contributions are
manifold: substantiating the feasibility of automated stochastic model induction, enhancing the empirical validity
of generative pedestrian simulations, and revealing novel behavioural insights to better design built environments.

2.2 Agent-Based Model: Station-Sim

To demonstrate IGSS concept with stochasticity, a simplified ABM of pedestrian behavior modeling, StationSim
was employed, depicting generic human crowd flow. The StationSim model aims to capture key factors influencing
pedestrian movement and congestion in train stations. The station layout is abstracted as a 2D grid with configurable
entrances, exits, and sample agent trajectories exhibiting movement and interaction dynamics as shown in the Figure
1.

In StationSim, agents emulate passengers exiting a train and crossing a station platform to leave through one
of several exits. The key entities in the model are the agents, representing individual pedestrians with attributes
such as location, speed, and movement history, and the station layout with configurable dimensions, entrances,
and exits. At model initialisation, N agents are instantiated and enter the rectangular platform environment at a
steady rate via one of three randomly assigned entrance points. Following that, they are assigned desired exit gate
location randomly at the entrance. Each agent is navigated across the platform given a maximum intended speed
sampled from a Gaussian distribution, which is a common assumption in pedestrian modeling literature [39] and it
simplifies the heterogeneity of real-world pedestrian populations. During navigation, faster agents encounter slower
agents obstructing their paths, triggering avoidance behaviours. When such interactions occur, the impeded agent
randomly selects either a left or right manoeuvre to circumvent the slower agent. This stochastic local collision
response induces emergent macro-level congestion patterns that vary across model executions. The simulation
concludes when all agents have entered the platform environment and successfully exited. Entrance and exit widths
impose capacity constraints, restricting the volume of agents that can enter or leave in a given model time step.



Fig. 1: The StationSim environment with 3 entrances and 2 exit doors.

The model’s conceptual framework is based on established theories in social science field, such as the social
force model [40] and the principle of least effort [41]. For example, the agent’s navigation towards their desired
exit while avoiding collisions is inspired by the social force model, which postulates that pedestrians are influenced
by attractive forces towards their goals and repulsive forces from other individuals and barriers. Moreover, the
model incorporates stochastic elements to represent the inherent variability in human behavior, such as random
fluctuations in walking speed and direction. The model assumes a steady inflow of agents, homogeneous decision-
making rules, and perfect knowledge of the station layout. While the model simplifies certain aspects of reality, such
as group dynamics, queueing behavior, and multi-level structures, it captures the essential elements of pedestrian
movement and interactions in a station setting. The three most important characteristics of this model are a)
individual heterogeneity: each agent has a desired maximum speed, b) agent interactions: agents are not allowed to
occupy the same space and try to overtake the slower agent, and c) emergence: crowding is an emergent property
of the system that arises as a result of the choice of exit and their maximum speed [42, 43]. By explicitly stating
these assumptions and limitations, the StationSim model provides a clear conceptual framework for understanding
and interpreting the simulation results in the context of pedestrian behavioural Modelling.

As IGSS is an emmerging concept with limitted literature, this study discovers plausible behavioural rules using a
simple ABM such as StationSim with psuedotruth data that incorporates stochastic variations in individual decision-
making based on age. It tries to see whether IGSS can pick up the actual model rule with stochastic variations in the
dataset to represent individual decision-making under uncertainty. In order to increase the complexity of decesion
making we introduced some additional factors such as age, gender, distance to exits and crowd at exits that can create
a more realistic representation of pedestrian behavior. Using genetic programming, an evolutionary computation
technique, we evolve an exit selection rule that combines these factors to optimally capture the patterns observed in
the stochastic pseudo-truth dataset, demonstrating the potential of IGSS for discovering plausible behavioral rules
in ABM with limited prior knowledge.

3 Methodology

ABMs capture emergent social processes but get complex, evolutionary methods model transmission but require
many design choices. Integrating them brings together individual and evolutionary dynamics for more plausible
yet interpretable models [? ]. [34, 33, 16, 8] introduced the Evolutionary Model Discovery (EMD) framework as
the first novel methodology for IGSS research. EMD allows automated exploration, evaluation, and discovery of
plausible micro-level agent rules that reproduce target macroscopic patterns. At its core, EMD utilises a genetic
programming optimisation to evolve agent decision rules representing combinations of hypothesised behavioural
factors affecting a process of interest. By representing decision rules as modular, reusable factor functions, the factor
composition can be systematically mutated towards higher simulation fitness against macro-level data patterns. Each
generation of alternate agent rules and resultant simulation fitness creates a dataset ameniable to causal inference
via random forest feature importance analysis, quantifying the role of factors in achieving model fit. The EMD
methodology was further developed by[37, 36, 17, 15]. The key advancements include formulating model discovery
as a multi-objective optimisation to trade-off between data-fit and interpretability; assessing theoretical credibility of
discovered structures with domain experts; developing modular software to enable testing of multiple theories; using
grammar-based genetic programming for more structured search; and identifying solutions, like surrogate-assisted
calibration, to address computational bottlenecks associated with parameter tuning for each candidate structure.



By extracting and manipulating the implicit ontology within an existing generative model, the authors open up
the process of abductive reasoning to computational augmentation and support. Together these developments allow
more systematic, theory-driven exploration for other researchers [38, 35] over wider model component spaces, while
balancing empirical fit with interpretability and computation.

The IGSS approach involves the following steps as described by [30]. First, stipulating a macroscopic target
pattern observed empirically or from theoretical models that one seeks to generate from the bottom-up (Step 1).
For example, patterns of residential segregation, trends in alcohol consumption, flocking movements, etc. Rather
than hand-design full agent rules, one then specifies more basic behavioural rule primitives and permissible ways of
combining them (Steps 2 and 3). This includes factors like racial preferences, social conformity, collision avoidance
and logical operators like if-then conditions, mathematical operations, nesting/recursion limits, etc. A fitness metric
is chosen to compute model-target alignment, such as error distances (Step 4), and an evolutionary algorithm, such
as genetic programming and grammatical evolution, is selected to search the space of rule combinations (Step 5).
Evolution proceeds according to this metric until reaching preset limits (Step 6). The end result is one or more
ABMs with evolved interaction rules that can successfully replicate the phenotype target pattern. In effect, IGSS
inverts traditional agent-based modelling by shifting creative design from complete agent specifications to their
underlying building blocks, using AI-based techniques for automated generative model discovery.

In lieu of real-world data, we utilise output from the StationSim simulation as target data for testing our
approach. This allows us to validate the capability of our method to automatically reverse-engineer agent logic
recapitulating provided reference data patterns. The evolved decision trees are automatically translated into modular
Python code to initialise and run the evolved models for fitness evaluation.

3.1 Hypothesised alternate factors influencing exit selection decision

The agents in the original StationSim model select the exits randomly at the entrance gate. First, the StationSim
model of the static exit selection rule was refined into a dynamic rule evaluated per time step. So, the IGSS is applied
to the changed model rule where agent select the exit randomly at each time step. Then, the set of hypothesized
factors that could influence an agent’s exit choice, such as distance, crowd density were defined to be implemented
as primitives in the genetic programming framework. To expand the realism of simulated human decision-making,
we draw on the Agent Zero framework proposed by [44], incorporating rational, social, and emotional dimensions
into exit choice calculations. As shown in Table 1 the provided hypothesised factors are terminal nodes for the
decision tree rules. We introduce each factor as a function(probability between [0,1]): compare distance (Fd), com-
pare neighbouring crowd (Fc), compare age (Fa), and compare gender (Fg). The categorisation of decision factors
into categories provides a conceptual framework, though the mapping of specific variables can be subjective. The
“rational” factor is represented by the comparison of distances to exits, reflecting the assumption that pedestrians
tend to choose the nearest exitand the “emotional” and “social” factors are captured by the agents’ tendency to
follow the crowd or align with the behavior of similar individuals in terms of age and gender.

Table 1: Primitive set used for exit selection of StationSim model

Node Syntax Return Type

MinOf min-one-of (exits)[comparator] exit
MaxOf max-one-of (exits)[comparator] exit
RandomOf random-one-of (exits)[comparator] exit
+ comparator + comparator comparator
- comparator - comparator comparator
Potentialexits exit-x exit-y exits

Rational factors

CompareDistance ((distance x-of-exit y-of-exit) / totDis-
tance)

comparator

Emotional / Social factors

CompareCrowd ((sum [num-agents] in-radius of 5) /
totCrowd)

comparator

CompareAge (((1-(Agent [age] - mean [age] of agents))
/ maxAge) / totRelativeAge)

comparator

CompareGender ((sum [num-agents] with same (gender) of
agent) / totAgents)

comparator



Next, a pseudo-truth dataset by running the StationSim model with a predefined exit selection rule was created
to be used as the target dataset. The pseudo-truth StationSim model as mentioned in the Table 3 used to collect
the target data utilised for the experiment. In this stochastic rule (later mentioned in the paper as “pseudo-truth
rule”), each agent randomly selects an exit, but the probability distribution is weighted based on the similarity of
the agent’s age compared to the average age of agents near the exits. We then used the Deap library to set up the
genetic programming experiment. This library parsed the StationSim model and generated a set of primitives and
factors based on the provided annotations. To ensure the evolution of valid agent logic, the genetic programming
components enforce strong typing between terminals nodes and the comparator nodes. As shown in Table 1, each
proposed factor has an associated type definition. Comparator nodes embed code for assessing exit options on
normalised sensor inputs, enabling fair mathematical operations across different factor types within the decision
trees. Later they were compared by the MinOf, MaxOf, and randomOf nodes to exactly select what exit the agent
selects based on exit options. By designing GP building blocks to align with programming syntax requirements,
the system constrains exploration to the space of compilable agent behaviours. Legal code generation facilitates the
translation of the evolved trees into executable agent-based model implementations.

For example, a combination of factors R(x) may be;

R(x) = Fd + Fc − Fa (1)

Agents then decide the exit to select, e
′
, using argmax, argmin, and random over the possible exits defined and

considering the final probability based on R(x) value:

e
′
= argminR(x) (2)

The genetic programming algorithm evolved a population of candidate exit selection rules, represented as syntax
trees, over multiple generations. Each candidate rule was evaluated by injecting it into the StationSim model, running
simulations, and comparing the resulting exit distributions to the pseudo-truth data using a fitness function. The
evolutionary process employed tournament selection, crossover, and mutation operators to create new generations
of candidate rules. Finally, we analyzed the evolved rules and their fitness scores to identify the most promising exit
selection strategies and assess the importance of different factors in reproducing the target patterns. Table 3 lists
the most fitted “candidate rules” for the pseudo-truth rule.

For model simplicity, we assume agents have full information on all exit sites. The goal is to minimising divergence
between simulated and target data on agent counts who selected each exit over time. Specifically, equation 3 defines
model error as the sum over all time steps t of the squared differences between the simulated (Y) and actual
agent (Y

′
) counts exiting through each exit (e) at each time step (i). Individual GP tree fitness scores report

aggregate error across a 1000-time step StationSim model evaluation. By explicitly fitting agent logic to match exit
distributions, the system evolves behaviours governing exit choice to reconstruct emergent system-level patterns
exhibited in the reference data.

Loss =

t∑
i=1

(Yi,e − Y
′

i,e)
2 (3)

4 Results

We executed three independent genetic programming runs to evolve the StationSim agent exit selection logic. The
configuration applied 20 generations with a population of 10 tree individuals, using crossover and mutation to explore
the space of possible decision rules. Each candidate tree was translated into a complete StationSim implementation
and simulated for 1000 steps. The aggregate deviation between the agent exit distributions and reference outputs
determined error. We set key evolutionary parameters as 0.8 crossover rate, 0.2 mutation rate, minimum tree depth
of 2, and maximum depth of 10. The minimum depth allows the first layer to be a random, minimum, or maximum
function, with the second layer introducing a single factor influencing choice. Through iterative evaluation and
refinement of agent behaviour trees, the system converges on rule sets replicating emergent circulation patterns
from the original model.

Table 2 lists the top 10 evolved decision trees with corresponding error scores, ranked by similarity to the
reference data. As expected, most appearing rule in the result is to select the exit gate randomly based on similarity
by age. Figure 2 displays the mean and standard deviation of aggregate loss value of each generation decreasing over
generations as agent behaviours improve. This close match confirms the capability to accurately reverse engineer the



Table 2: The 10 top candidate models

Run Gen Rule Agg: Error

0 15 Exit = Randomly based on the similarity by age 4446.27
0 4 Exit = Randomly based on the similarity by age 4713.41
2 17 Exit = Minimum based on the combination of difference between (similarity by gender and

crowdness) and combination of (distance and similarity by age)
4839.07

2 13 Exit = Minimum based on the distance 4926.21
0 3 Exit = Randomly based on the similarity by age 4960.11
0 10 Exit = Randomly based on the similarity by age 4967.73
0 19 Exit = Minimum based on the distance 5001.91
2 5 Exit = Randomly based on the similarity by age 5009.29
0 18 Exit = Randomly based on the similarity by age 5029.51
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Fig. 2: Mean Aggregate Error over Generations

key exit choice logic governing circulation dynamics in the original StationSim model. The full genetic programming
experiment required approximately 20 hours of computation time.

Figure 3 displays the Aggregate error of the best agent logic discovered in each genetic programming run over
generations. Convergence to low error solutions appears gradual, likely due to the limited generations and pseudo-
truth data set based on a stochastic rule. Figure 4 plots the size of the optimum trees found so far per generation in
each run, indicating one run maintains compact decision rules while the others evolve between maximum allowed
depth mostly in early generations. Between runs, variability in tree shape and speed of fitness improvement by
lowering the error highlights the stochastic nature of genetic programming optimisation. Additional computational
budget for longer runs and larger populations could improve solution quality and convergence rates.

For easy Visualisation in later plot, the unique candidate rules in the Table 2 are shortlisted in the Table 3
where pseudo-truth rule and the candidate Rule 1 are the same.

Figure 5 and Table 4 exhibit simulation results from three top evolved decision rules (rules 1, 3, and 4 in the Table
3) compared against each other across 100 simulation runs. These rules were selected based on their performance in
reproducing the patterns observed in the pseudo-truth dataset, which was generated using Rule 1. In this analysis,
Rule 1 serves as the benchmark, representing the ”ground truth” or the target behavior we aim to replicate. The
other evolved rules (Rules 3 and 4) are evaluated based on how closely they match the performance of Rule 1.

When compared to Rule 1, Rule 2 has a similar median aggregate error score. Interestingly, the Rule 2 spread
is fully contained within the Rule 1 distribution, indicating greater consistency. This shows Rule 2 can almost
replicate Rule 1’s performance, serving as a plausible explanatory model even if falling short of ground truth
decisions. Conversely, Rule 3’s mean is considerably lower at 7710.24, with a higher deviation of 1579.33. So it fails
to approach Rule 1 aggregate outcomes while retaining a similar variability profile. Concretely, Rule 2 approximates
truth better statistically, while Rule 3 diverges on overall accuracy but emulates variance characteristics. Given these
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Fig. 3: The best model by generation in each genetic programming runs
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data details, Rule 2 provides a feasible decision theory not far from ground truth, whereas Rule 3 does not explain
the core patterns well despite matching uncertainty levels.

Factor importance obtained through permutation accuracy importance techniques can be seen in Figure 6. It is
calculated by randomly shuffling the presence values of each factor in isolation and quantifying the resulting decrease
in error prediction performance of the trained random forest model. The result indicated compare distance as the
most influential contributor to model fitness (error reduction), with Similarity by gender also showing a stronger
role in exit choice behaviour than the other hypothesised factors.

5 Discussion

Our study goes beyond a mere demonstration of a specific parameter setup and simulation execution. By employing
the Inverse Generative Social Science (IGSS) approach with genetic programming, we aim to shed light on the
fundamental mechanisms underlying pedestrian exit selection behavior in train stations. The StationSim model
serves as a flexible platform to explore the space of plausible behavioral rules and test hypotheses about the factors
influencing pedestrian decision-making. The evolutionary process of rule discovery allows us to uncover novel and
emergent strategies that may not be readily apparent from traditional deductive approaches. The rules governing



Table 3: The unique top three candidate rules

Model Exit Selection Rule

Pseudo-truth Exit = Randomly based on the similarity by age
rule (for generating
target data)
Rule 1 Exit = Randomly based on the similarity by age
(candidate rule)
Rule 3 Exit = Minimum based on the combination of difference between (similarity by gender and
(candidate rule) crowdness) and combination of (distance and similarity by age)
Rule 4 Exit = Minimum based on the distance
(candidate rule)
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Fig. 5: Comparisons of 100 samples of three of the top-performing models

agents in current applications of IGSS thus far have been limited to deterministic specifications. Developing tech-
niques to effectively search over stochastic mechanisms remains an open challenge for realising the full promise of
generative modelling. Advancing stochastic IGSS methods suited to capturing the inherent randomness of human
behaviour and social systems represents an important frontier.

In this study, we utilised genetic programming to evolve Python-based ABMs. We reanalysed and augmented
a set of ABMs focusing on individual behaviour in exit selection as simulated via a pseudo-truth data set. We
explored a broader set of potential decision rules while introducing the stochastic nodes to the decision trees than
was previously done using deterministic rules. We found that IGSS can pick up the model with the same stochastic
rule used for collecting pseudo-truth data as the most fitted model. Further, the resulting other models were able
to display nearly identical macro behaviours to our reference models.

The concept of predictable human behaviours overlaid with random perturbations has appeared across be-
havioural modelling literature. [45] conceptualised this idea as agents following general decision tendencies, but
imprecise reasoning and uncertainty inject stochastic elements. Later, [35] incorporated a stochastic term in evolv-
ing utility-based choice rules with IGSS. Their work simply adds a random factor (terminal node), where the
selection primitives (comparator node) stayed deterministic to select between get max or get min. Additionally,

Table 4: Mean and Standard Deviation (SD) of best models

Rule Mean SD

gate out=self.randomly select exit(model,(similarity by age)) 8843.97 1422.62
gate out=self.get min select exit(model,(self.combine(self.subtract(similarity by gender 8595.48 1208.07
neighbourhood count exits),self.combine(compare distance,similarity by age))))
gate out=self.get min select exit(model,(compare distance)) 7710.23 1579.32
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we introduced get random, where the agent randomly selects exits based on the probability calculated by factor
combinations.

There are additional insights to be had from the models generated and subsequent factor analysis. We note
that rule 4, which is based on the distance factor in Table 2 represents an interesting outlier in the top performers
as illustrated in Figure 5 and table 4 , as it shows a lower medium and mean error value when compared to rule
1, which is the benchmark to the specific pseudo-truth data set considered in rule evolution. On the other hand,
contrary to the reference model exit selection behaviour of the StationSim model, where an agent would randomly
select the exits in relation to age, the permutation accuracy importance results show that agents are most likely to
random comparator over min and max, but distance as the most important factor over similarity by age.

In this genetic algorithm experiment seeking to evolve stochastic rules, the randomness in Rule 1 could allow
it to achieve high error scores against the pseudo-truth by chance alignments, but the deterministic rules seem
to do better when evaluated across many repeated trials. Further, reliance on a single static pseudo-truth data
mapping for fitness evaluation might have led to overfitting and optimising the rules too closely to that specific
pseudo-truth data. Though Rule 1 scored best on fitness against that target data, Rules 3 and 4 may be more
robust rules in general. There may be gene interactions happening in the genetic algorithm evolution process that
lead to unexpected emergent behaviours. The evolved rules may exploit certain combinations and nonlinearities.

To promote the evolution of broadly generalisable stochastic rules, multiple mechanisms must be employed
to overcome this training overfitting effect. Specifically, k-fold cross-validation should be used so that rules are
evaluated against multiple held-out data partitions rather than just a singular target output mapping. Additionally,
explicit incentives such as bonus fitness rewards for error reduction should be incorporated for stochastic behaviours
exhibited in promising rule candidates across evaluations. Other enhancements include expanding the rule search
space complexity and forcing rules to generalise across iteratively updated pseudo-truth data. By emphasizing rule
generalization beyond narrow accuracy gains on limited training distributions, the genetic algorithm can better
identify robust and widely applicable stochastic rules for simulation modelling.

Currently, all the agent models being tested assume that everyone follows the same decision-making strategy.
Allowing different agents to use different strategies could potentially improve heterogeneity in agent behaviour and
might lead to models that fit the human data even better. Further, as [15] suggested exploring the whole model
without just evolving one sub-model will uncover the true potential of IGSS. Future work could introduce agent
heterogeneity and apply IGSS to learn personalised collision avoidance behaviours with the StationSim model.



This work adds to a growing body of literature [34, 37, 35, 38] demonstrating the promise of IGSS for agent-
based social science research. By automating the discovery of the micro-level rules able to recreate emergence, these
methods can strengthen model accuracy, plausibility, and generalisability compared to purely theoretical specifica-
tions. As IGSS matures to handle richer data and more complex collective dynamics, it may provide fundamental
new insights into causal mechanisms in social systems. However, care must be taken to avoid overfitting and ensure
model interpretability. Overall our results confirm the value of genetic programming for the next generation of
generative social science focused on policy-relevant explanations over purely predictive functions.
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