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Abstract. To effectively simulate crowd behavior, understanding the decision-
making processes of pedestrians is paramount. This paper proposes a novel 
method for deducing pedestrians’ decision-making by conceptualizing the sum 
of their reward function along the trajectory as a utility function. While inverse 
reinforcement learning has been successfully used to retrieve the reward function 
of pedestrians, the outcome of advanced training algorithms is in the format of 
neural networks. Due to the black-box nature of neural networks, model inter-
pretability methods are utilized to extract attributions of each input feature. This 
paper introduces a coupled method of inverse reinforcement learning and model 
interpretability to infer pedestrians’ decision-making on urban sidewalks based 
on the trajectory data collected in previous experiments. Furthermore, a prelimi-
nary test in a classical reinforcement learning environment cart pole is included 
to demonstrate the viability of the proposed method. 

Keywords: Pedestrian decision-making, pedestrian behavior simulation, in-
verse reinforcement learning, urban street 

1 Introduction 

Simulating crowd behavior through analytical models or simulation tools has proved 
its worth in the design of public spaces and planning for large gatherings [1]. Most 
advanced approaches for modelling multi-agent interactions within a crowd include di-
rect trajectory prediction methods such as deep learning algorithms [2, 3], as well as 
deriving the movement preference of a crowd through reinforcement learning [4, 5]. 

Furthermore, a good practical performance of reinforcement learning greatly de-
pends on the design of the reward function [6], which can be thought of as ranking 
various behaviors [7] as a response to environmental attributes, i.e., a decision-making 
process [8, 9]. Consequently, a comprehensive understanding of decision-making is 
vital, and this can also facilitate the provision of a more comfortable walking environ-
ment [8] and assist in developing efficient crowd management strategies [10].  
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While applying reinforcement learning in practice, designing a reward function that 
is capable of encouraging socially acceptable behavior remains a significant challenge 
[6]. Inverse reinforcement learning (IRL), in contrast, is capable for deducting such 
reward functions by learning from the input data. Since the outcome of adversarial IRL 
method is in the form of neural network, interpretation methods are still needed to quan-
titatively assess the contribution of each environmental attributes on decision-making. 
Moreover, the explained reward function allows urban researchers to understand the 
mechanism between built environment design and pedestrian behavior, which, in turn, 
can improve the design of public spaces and provide reference for agent modelling 
within similar scenario. 

Therefore, this paper aims to: (1) propose a framework for inferring pedestrians’ 
decision-making in urban sidewalks, and (2) validate the usage of model interpretability 
in evaluating attributions of each input for the reward function neural network retrieved 
through IRL. 

2 Literature review 

2.1 Pedestrian decision-making 

The mechanism of decision-making for pedestrians, as identified by [8], involves a 
process of making trade-offs between desirable and undesirable attributes in the sur-
rounding environments. Such a process is known as utility theory, which assumes that 
pedestrians assign a quantitative value 𝛽! (also known as utility) to each attribute 𝑋". 
The utilities reflect the degree to which the corresponding attributes contribute to the 
actions made and are combined in a way commonly known as utility function 𝐺" (see 
Equation 1 as an example). Under utility theory, each action pedestrians make could 
be viewed as an outcome of optimizing the utility function, as it stands for the mecha-
nism of decision-making. 

𝐺" = 𝛽#𝑋"! +	𝛽$𝑋"" +⋯+ 𝛽!𝑋"# (1) 

Two approaches have been adopted widely to infer the relative utility (as we are only 
interested in their comparative contribution) for different attributes encountered during 
movement: scores given by participants using a questionnaire [11, 12, 13] and by means 
of a regression model based on experimental data [14, 15, 16]. However both ap-
proaches suffer from drawbacks: pedestrians do not always perform in the way they 
declare in the questionnaire [17] and the regression model can only be used to decide 
the contribution of each factor towards action choice at a single timestep, often repre-
sented as discrete choices (e.g., choice of exit) [18]. 

In summary, a better approach for inferring the utility function of value associated 
with pedestrian decision-making is needed, that can both i) quantify contributions of 
each attribute towards the function decision reflecting pedestrian’s movement prefer-
ences in real life, ii) comprehend the movement preference behind the entire trajectory. 
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As summarized by previous studies [19], common factors affecting pedestrian tra-
jectory include the: movement direction, and speed and density of neighboring pedes-
trians. Additionally, built environment factors have also been identified as being asso-
ciated with pedestrians’ movement preference [20]. For example, [21] highlighted that 
the design of street features, including width of sidewalks, transparency of street walls, 
green spaces (including trees), and street furniture impacts on pedestrians’ movements. 

2.2 Inverse reinforcement learning (IRL) 

As an essential element of reinforcement learning, the reward function 𝑅	can be used 
to infer an agent’s intentions [6] and is often used to provide a reward signal during 
each transition along the trajectory. The sum of rewards along the trajectory 𝜏 could be 
viewed as a utility function [22]: 

𝐺(𝜏) = 	∑ 𝑅%&
%'#  (2) 

while optimizing G, the optimal policy 𝜋∗ is achieved, which stands for the preference 
of actions over the entire trajectory. 

Inverse reinforcement learning [23], on the other hand, has been proposed to infer 
the reward function being optimized by expert agents. Such a method has been consid-
ered necessary as it facilitates the determination of the relative weights of the multi-
attribute reward function and constructs an intelligent agent capable of performing spe-
cific tasks akin to real-life experts. 

In the field of pedestrian dynamics, IRL has been successful in: inferring a naviga-
tion policy for robots in human crowds [24, 25, 26], modelling interactions between 
pedestrians with vehicles [27, 28] and cyclists [29], and predicting future trajectories 
[30]. This has exploited the capacity of IRL for constructing intelligent agents but left 
the reward function unexplored. 

Adversarial IRL method [31, 6] is a crucial framework proposed by [32] to infer 
reward function based on generative adversarial network. Such method involves the 
training of a generator neural network 𝐺, together with a discriminator neural network 
𝐷. The reward function can then be retrieved from the discriminator 𝐷 in a form of 
neural network [6]. However, analyzing the reward function still poses challenges, as 
the neural network decision-making mechanism is not explicitly accessible [33].  

 
In this research, we propose a new method to infer a pedestrian’s decision-making 

process through combining inverse reinforcement learning and model interpretability, 
which enables the analysis of thein which the outcome is a reward neural network ana-
lyzed with the assistance of model interpretability. The result shall present the relative 
contribution from each attribute within the environment to the decision making of pe-
destrians, which can not only shed light on the understanding of interactions between 
environment and pedestrians, but also can be used for a more accurate multiagent mod-
elling. 
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3 Methodology  

3.1 Model framework 

Model formation. The entire trajectory of pedestrians could be viewed as a Markov 
Decision Process (MDP) denoted by the tuple 𝑀 = (𝑆, 𝐴, 𝑇, 𝑅, 𝛾), where 𝑆 is the state 
space; 𝐴 is the action space; 𝑇(𝑠, 𝑠), 𝑎) is the transition probability from state 𝑠 to state 
𝑠) under action 𝑎 determined by the environment dynamics; 𝑅 is the reward function 
we are trying to recover; 𝛾 is the discount factor ranged on [0,1), indicating the level 
of preference for immediate reward over future reward. 

As summarized above, common impact factors of pedestrian decision-making in-
clude pedestrian density, moving direction, and pedestrian speed. From the perspective 
of each pedestrian, the perceived information only contains the density and speeds of 
N pedestrians within their eyesight in the direction of moving ℎ, normally represented 
by a sector with a radius of 4 meters and a central angle of 180 degrees [34]. The density 
is expressed in terms of the number of pedestrians within eyesight and categorized into 
two levels of speed: slow and fast, i.e.,  

𝑁*+,- +𝑁./*% =	𝑁0"	*023%  (3) 

This forms the foundation of agent state space 𝑆 together with the current position 
𝑋 and destination 𝐷4. As this research focuses on the urban sidewalk design, the width 
of the sidewalk 𝑊, the shortest distance with the green space 𝐷2, and transparency of 
the street wall 𝑇 (denoted by a binary number that 1 stands for transparent) are also 
combined to reflect the environmental impact. In summary, the state space 𝑆 will be 
expressed as: 

𝑆 = [𝑋, 𝐷4 , ℎ, 𝑁*+,- , 𝑁./*% ,𝑊, 𝐷2, 𝑇	] (4) 

The action space 𝐴 is denoted as:  

𝐴 = [𝑉,𝜔] (5) 

where 𝑉 stands for velocity, and 𝜔 is the change of direction. 
 
Training Algorithm. Within the framework of Adversarial IRL method, the generator 
𝐺 serves as the policy 𝜋(𝑎|𝑠), which aims to generate occupancy measure 𝜌5 = 𝜋(𝑎|𝑠)	
∑ 𝛾%6
%'7 𝑃(𝑠% = 𝑠|𝜋), i.e., the distribution of state action pair under policy 𝜋(𝑎|𝑠), sim-

ilar to that of expert policy 𝜋8, which is often provided as a set of trajectories sampled 
by executing 𝜋8 in the environment named expert demonstration. 
 
The discriminator 𝐷, on the other side, aims to differentiate the generated state action 
pair with expert demonstration through minimizing cross-entropy loss: log(1 −
𝐷(𝜏)) −	 log𝐷(𝜏). Adversarial Inverse Reinforcement Learning (AIRL) proposed by 
[6] is utilized in this research due to its capability to recover reward function that is 
robust to changes in environment dynamics. Compared with other adversarial IRL 
methods, such as GAIL [31], AIRL gives a special structure to the discriminator 𝐷: 
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𝐷9,∅(𝑠, 𝑎, 𝑠)) = 	
<=>?.$,∅@*,/,*'AB

<=>?.$,∅(*,/,*')BE	5(𝑎|𝑠) (6) 

Where 𝑓9,∅ is the learnt reward neural network parametrized by 𝜃	and ∅, restricted to a 
reward approximator 𝑔9 and a shaping term ℎ∅: 

𝑓9,∅(𝑠, 𝑎, 𝑠)) = 	𝑔9(𝑠, 𝑎) + 	𝛾ℎ∅(𝑠)) − ℎ∅(𝑠) (7) 

Model interpretability. Three model interpretability methods, namely feature abla-
tion, Shapley value sampling (SVP), and Kernel SHAP are explored in this research for 
their usage in explaining the reward function 𝑓9,∅(𝑠, 𝑎, 𝑠)). All methods are aimed at 
evaluating the attribution of each input to the output of the neural network. 

In feature ablation, each input is replaced with a baseline, and the attribution is cal-
culated based on the impact of replacement on the output [35]. The concept of Shapley 
value is utilized in the other two methods, and it is based on concepts from cooperative 
game theory, in which all the input features collaborate together to accomplish one task 
(output). The attribution of each input feature is then calculated based on its impact on 
output when it is added to permutations of other input features [36]. As it is computa-
tionally intensive to calculate all the permutations when the dimension of input features 
is large, alternatives have been proposed that SVP uses random sampling of permuta-
tion and Kernel SHAP uses a weighting kernel to perform linear approximation [37]. 

In this research, a Python package named “Captum” [38] is used to implement these 
model interpretability methods. 

3.2 Data input 

The source of data used in the model training process was collected through an experi-
ment led by Liu Yang and her colleagues, which took place from December 15 to 22, 
2021, in Nanjing, China. A total of 34 healthy participants aged 14–55 were recruited 
through social media, and informed consent was obtained from adults and guardians of 
any teenagers. The experiment adhered to the Declaration of Helsinki guidelines. 

Located at Xinjiekou Subway Station in Nanjing’s commercial centre, the chosen 
ground space featured four-story commercial buildings on one side and a sidewalk with 
trees on the other. A preliminary test on December 16, 2021, with four participants 
validated the experimental design. The remaining 30 participants, 14 males and 16 fe-
males, were grouped into six groups and joined the experiment on the days between 
December 17 to 22. 

The participants were briefed on the experiment’s purpose and equipped with port-
able wireless physiological recording devices in order to collect trajectory data upon 
arrival at the subway station. Subsequently, participants were guided to the station exit 
and instructed to go to the next road crossing within 10 minutes. During the walk, par-
ticipants could freely explore the sidewalk and open spaces but were not allowed to go 
into buildings. Table 1 shows a sample of the collected trajectory data and the resultant 
trajectories are demonstrated in Fig. 1. 
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Table 1. Data sample of participant’s trajectories 

Start Time(s) X(°) Y(°) 

0 118.779357 32.0441735 

1 118.779357 32.0441735 

2 118.779357 32.0441755 

3 118.779356 32.0441778 

4 118.779361 32.0441805 

5 118.779366 32.044178 

 

Fig. 1. Trajectories mapped on the site plan 

3.3 Data preprocessing 

One landmark statue on Zhongshan road is picked as the origin point, with X axis and 
Y axis extend to the north and east respectively. The geodesic distance is then calcu-
lated based between collected trajectory and the proposed reference system so that the 
positions of the participants are expressed in the unit of meters. 
 
Trajectories are then put into groups based on the allocation on the day of the experi-
ment. At each time step, the information of 𝑁*+,- , 𝑁./*% is available to the agent within 
the same group. 
 
Each trajectory is then divided into adjacent intervals of 5 seconds by convention [25]. 
As this research focuses on the distance with green space 𝐷2 and the effect of the street 
wall, any interval that does not include a position within 2 m range of green space or 
street wall is eliminated. The destination 𝐷4 of this interval is set as the position at the 
last time step.  
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4 Preliminary Results 

The proposed method, which uses model interpretability methods to understand the re-
ward network trained by AIRL, is further tested based on a classical control task, cart 
pole, in reinforcement learning [39]. The goal of a cart pole is to keep a pole upright as 
long as possible by moving the cart left and right, which comprise the action space. The 
state space includes the position and velocity of the cart, and the angle and angular 
velocity of the pole with respect to the cart. 

A trained model provided by [40] is imported into the test. This model has demon-
strated successfully keeping the pole upright for the duration of the episode (500 sec-
onds), and it can be observed from the video that the cart is primarily moving to the 
right. AIRL is used to retrieve the reward network of this model and three model inter-
pretability methods are then used to infer the relative attribution of each input feature.  

The result is presented in Fig. 2. . All three methods demonstrate consistency across 
all the input features besides position in the current state, as feature ablation shows a 
small positive contribution. Meanwhile, SVP and Kernel SHAP present almost no cor-
relation. Velocity in the current state has been identified as the major negative contrib-
utor to the reward, together with angular velocity which has only 1/2 to 1/3 of its con-
tribution. The biggest positive contributor to reward is the left action, and the right 
action, position and velocity in the next state have almost the same positive attribution. 

 
Fig. 2. Relative attribution of reward network input features 

As the cart is primarily moving towards the right, it could be argued that the right 
action is mainly causing the imbalance of the pole (tilt to the left), and thus, the left 
action is counteracting to regain balance. This is consistent with the result of the test 
that the attribution of left action is approximately twice that of the right action. Conse-
quently, positive velocity, negative angle and angular velocity, i.e., indicators that the 
cart is moving to the right, are negatively correlated with the reward. The only 
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exception lies in the current position, which is mostly irrelevant to the direction of the 
movement when it changes so rapidly, and thus is consistent with the results of SVP 
and Kernel SHAP. 

However, due to the rightward bias of the cart movement, its position is mostly pos-
itive (i.e., on the right side of the origin) during the entire trajectory. Hence a negative 
value in the next state indicates a series of left movements, which leads to a strong 
imbalance of the pole. This explains the high positive correlation between the next po-
sition and reward. Additionally, the system is preferred to transition to a balanced state, 
i.e., small angle (low correlation), while moving to the right, i.e., positive velocity and 
negative angular velocity.  

5 Discussions and conclusion 

This paper introduces an innovative approach to understand pedestrians’ decision-mak-
ing processes by framing the sum of their reward function along the trajectory as a 
utility function. Despite the conventional use of IRL for retrieving pedestrians’ reward 
functions, recent progress in training algorithms has shifted towards neural networks. 
The opaque nature of neural networks necessitates the application of model interpreta-
bility techniques to discern the contributions of individual input features. This study 
advocates a combined method involving AIRL and model interpretability to infer pe-
destrians’ decision-making on urban sidewalks, utilizing trajectory data from prior ex-
periments. 

The result of the preliminary test has demonstrated the usage of model interpretabil-
ity upon explaining the reward network retrieved by AIRL. It can be summarized that 
velocity and angular velocity should be the key elements when the agent is making 
action choices.  

Similarly, it is reasonable to deduce that an analysis of the pedestrian movement 
reward net could provide insights into their decision-making process. A figure similar 
to Fig. 2 can be achieved with the relative contribution from each attribute to the deci-
sion making of pedestrian, e.g., the pedestrian values more on the transparency of the 
street wall over their distance with the green space. 

Consequently, the obtained rewards offer valuable insights for urban designers in 
order to influence pedestrian movements by refining the characteristics of urban streets, 
with a particular focus on sidewalks. These rewards can be incorporated into pedestrian 
models, enabling predictions of walking behavior across various urban design scenar-
ios. This integration facilitates decision-making support for designers seeking to en-
hance the overall pedestrian experience in urban environments.  

It is also useful for the obtained reward to be used in multiagent modelling. This 
result not only enhances traditional social force modelling [41] by providing a reference 
for the magnitude of the social force, but also serves as a valuable starting point for 
reward engineering in various scenarios.  

In a subsequent step, the construction of pedestrian decision-making on urban side-
walks will be performed, based on the model proposed in 3.1 with the data demon-
strated in 3.2. Different scenarios such as subway station or large event gathering will 
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also be examined to explore the proposed method’s scalability. Furthermore, as the re-
search at the current stage assumes homogeneity among all the pedestrians, categoriz-
ing different types of pedestrians based on the occupancy measure and comparing the 
focus of their decision-making will also be explored. 
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