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Abstract. The transition to decentralized energy distribution, where
any node can function as a consumer and/or producer, presents chal-
lenges in the design and testing of control algorithms, particularly in
maintaining production. The existing energy scheduling model, assuming
uniformity, struggles to capture the unique dynamics and constraints of
individual production units. This paper introduces KEMASS, a method
and system for generating a Multi-Agent System using Ontologies and
Knowledge Graphs to tailor optimization algorithms for power plants.
Implemented in a specific energy production valley, KEMASS closely
simulates the actual system, optimizing energy schedule while consider-
ing local constraints. Although not yet a complete Digital Twin for En-
ergy Scheduling Support, KEMASS, with its dynamic Knowledge Graphs
and Ontologies, is more adaptable to evolving into one compared to other
systems. The use of Knowledge Representation technologies makes it
suitable for various applications.

Keywords: Multi-Agent System - Ontology - Knowledge Graph - Multi-
Agent System Engineering - Simulation - Energy - Real-world scenarios

1 Introduction

The energy sector is shifting from conventional to renewable energy sources,
leading to a decentralized production landscape with diverse stakeholders. This
transition to a complex and decentralized energy system (a.k.a. SmartGrid) poses
growing challenges in balancing supply and demand on electrical grids, as well
as in designing management and optimization algorithms for companies in the
energy sector [2TI17].

The existing forecasting and optimization model for electricity production,
assuming uniformity across facilities, fails to capture sector dynamics and con-
straints unique to each production unit. Disparities between production sched-
ules and actual capacities require frequent adjustments and human verification.
The optimization algorithm needs customization for each power plant type, and
coordinating diverse units involves interacting with multiple systems. Engineers



designing new SmartGrid algorithms need to test them under various condi-
tions (e.g. extreme cases). However, as the actual energy system must remain in
production, testing on it is nearly impossible.

If the engineers would have a Digital Twin (DT) of the system at their dis-
posal, they would be able to set up such specific scenarios, run some simu-
lations, collect data, select the best solutions and apply them directly to the
actual system, when required. In this paper, we propose KEMASS, a method-
ology /implementation, that generates a Multi-Agent System (MAS) based on
Knowledge Representations (KR) of the various components of the actual sys-
tem, represented with Ontologiesﬂ and Knowledge Graphsﬂ

Choosing MAS as the digital twin in the DT is straightforward given Smart-
Grid’s decentralized structure and autonomous elements. Employing KR allows
energy engineers to express their expertise seamlessly, ensuring interoperability
among diverse facility agents and facilitating interaction with future external
systems [21].

The paper is organized as follows: Section [2| discusses related works and
limitations of current approaches; Section [3| details the ontology construction
and the KEMASS system; Section [4] presents the results from running the MAS
for an energy production in a French valley; and Section [ discusses KEMASS’s
strengths, weaknesses, and potential extensions.

2 Related Works

There are three main approaches to mixing Multi-Agent Systems and Knowledge
Representations in the literature:

— External once-and-for-all generation of the MAS: [I5[78] provide
external means to generate the MAS, once and for all, from the KRs (e.g. a
toolchain that generates code, or Protégé plugins for MAS mapping).

— External specifications for the MAS: [24] uses KGs to formulate the
specifications of the system. The description of the agents is “external”, like
an API. The representation of the system can be manipulated, e.g. by the
agents themselves, to “understand” how to call a service or communicate
with another entity, but they do not need to know how the service/agent
will do its job.

— Runtime generation of Agents: [IT/4/19] generally deploy special “con-
structor” agents/services in the MAS platform/language, which use the rep-
resentation of the system, to generate agents, from the KRs, at runtime. In

3 An Ontology is a formal and explicit specification of a shared conceptualization.
It is a way of representing knowledge in a machine-readable format that can be
understood by both humans and machines. Ontologies define concepts and categories,
as well as their properties and relations [13].

4 Knowledge Graphs (KGs) are some sort of instantiation of an Ontology on a set of
individual data points. A KG is a graph-based database that represents knowledge in
a structured and semantically rich format. It is a way of organizing and representing
data that allows for more efficient and effective processing of information [I3].



this strategy, it is important to model the “internal” functioning of the agents
(i.e. “executable code”), in order to completely instantiate the agents. The
approach allows for some level of verification of the MAS specifications.

A true Digital Twin [I0] requires connections in both directions between
the physical system and the virtual one. The first approach lacks the possibility
to have a backward connection from the running virtual system to the physical
system. The second approach lacks the internal representation of the agents’
functioning, thus does not completely implement the connection from the phys-
ical system to the virtual system. Only the third approach is opened to the
creation of a true DT. We thus focus mostly on this approach.

To further describe the connection between KR and MAS, we will rely on
the “Vowels” paradigm [2]), that identifies five components in MAS: Agents,
Environment, Interactions, Organization, User, and discuss the use of KRs at
each of these levels.

Some works, such as [23/6/9] employ KRs at the Agent level for reason-
ing, while others use them at the Interaction level as a “common language”,
to smooth inter-agent communications [8IT6I22|23], particularly as a means of
interoperability between different sources of information [If3]. As emphasized
in [I6], these uses of KRs in MAS are related. Indeed, if Agents communicate
using KRs, they already manipulate elements on which they can reason. Thus, it
is reasonable to design the reasoning process of these agents based on the same
KRs [16]. Moreover, if Agents’ reasoning is based on KRs, they are most prob-
ably already manipulating concepts from the Organization/Environment levels,
in their KRs. The prospect of designing the complete MAS using these KRs
is thus in close reach. At best, papers in the literature are using Ontologies as
the unique Knowledge Representations to describe the actual system. Ontologies
can represent the structure of the system, including classes and their relations.
However, Ontologies do not provide sufficient detail to fully instantiate an agent,
including configurations/values of its properties, from real-world data, a task at
which Knowledge Graphs excel. This is the main contribution of KEMASS, our
model. This is also, the specific means that will allow the MAS to communicate
back with the physical system, thus opening the door the the generation of an
actual DT.

3 Methodology

The objective of KEMASS is to automatically generate Multi-Agent Systems
(MAS) from energy system descriptions using Knowledge Representations. The
paper specifically focuses on developing a tool to assess the feasibility of produc-
tion schedules for hydropower plants in a French valley, taking into account both
local and global constraints. The modeling incorporates absolute timesteps, each
lasting 30 minutes, to ensure synchronous agent operation.

Our methodology comprises two components: (1) domain representation and
(2) automatic MAS generation, as illustrated in Figure
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Fig. 1. The Methodology for automatically Generating a Multi-Agent System platform
from Knowledge Representation and its prospective evolution into a Digital Twin.

3.1 Domain representation

Domain knowledge is represented through the creation of an Ontology and a
Knowledge Graph (Figure . These Knowledge Representation elements serve
as a resource generator for our Multi-Agent Systems simulation. An example of
this is the transformation of the blue classes in the Hydropower Ontology into
MAS agents.

Agents and their organization: Local constraints modeled at the Produc-
tion facilityﬂ include unit activation times, operating duration adjustments,
capacities, water flow rates, and power output. This Production facility entity is
a subclass of Physical object, a broad category covering shared characteristics
between Production facilities and Reservoirs.

At the regional level, constraints revolve around the spatial position of Phys-
ical Objects in a Valley, impacting flow, operational capacity, and collabora-
tion sequencing.

At a global scale, a Programming Entity manages production scheduling
of Productions Facilities in Valleys, specifying time slots and power demand
for each.

Agent behaviors and interactions: Agent behaviors are intricately inte-
grated into the template linked to ontology classes, providing flexibility for
modeling within our implementation. The dynamic interaction and coordina-
tion among all agents, as conditioned by the ontology, are illustrated in Figure
Bl The MAS starts with the reactive agent Programming Entity transmit-
ting daily production schedules for coordination to each Production facility
agent. The Production facility, in turn, initiates actions through a Finite
State Machine (FSM) encompassing main states of the plant: shutdown, restart,

5 Bold text marks Agent names.
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and production. In the shutdown state, the agent remains inactive, periodically
checking for a need to resume activity. During the restart phase, the agent takes
some duration to find the best operating point based on instant water flow before
resuming production. The agent communicates flow information to upstream and
downstream agents classified as Physical objects, records production and flow
rates, conveys efficiency information during operating point changes, and noti-
fies of shutdown. Reservoir agents update water volume, adjust inflow /outflow
based on messages, and introduce random adjustments in the inflow with a cyclic
behavior.

3.2 Automatic MAS generation

This section presents the KEMASS methodology, for generating and running a
Multi-Agent System from Knowledge Representation implemented as Ontologies
and Knowledge Graphs.

The section centers on the KR-to-MAS conversion methodology, which oc-
curs in two primary stages involving three programmatic objects known as (see
Figure : Main (the algorithm launcher), ConstructAgent, and ClassBuilder.
The initial step involves the generation of Java classes from the ontology, while
the second step instantiates Jade agents from a knowledge graph.

Generation of Agents’ class from ontologies

The first phase of our KR-to-MAS conversion algorithm is class creation. Man-
aged by an agent builder, this stage combines the loading of ontologies into
memory and the generation of functional classes through the ClassBuilder util-
ity. Ontology files are converted into RDF4JE| models. The ontologies are split
into two RDF4J models, one for the main ontology, and the second for the im-
ported ones. This solution is paving the way for the selection of relevant classes
in the construction of the final MAS.

Conversion rules: After initializing the algorithm, the constructor agent re-
lies on a class dedicated to conversion, the ClassBuilder. The ClassBuilder plays
a crucial role in translating ontological concepts into executable Java code. On-
tology classes, which may include Jade agents, Java base classes or Enums,
are generated according to parameters defined in a specific configuration file.
The SubClassOf properties are used to establish hierarchical links between
classes, while taking into account Java’s inheritance constraints. Data type prop-
erties (owl:DatatypeProperty) are translated into variables according to the
XSD to Java conversion rules, and object properties (owl:0ObjectProperty)
are converted into variables, using the class defined by the "range" property
(rdfs:range) as the type. Cardinality constraints, in particular the "minimum
1" constraint, guide the algorithm by signaling the representation of properties
in the form of lists (ArrayList). Finally, class indivuals (owl:classIndividual)

S https://www.rdf4j.org/
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are used to represent the elements of an Enum. At the end of this step, the on-
tology conversion function is invoked recursively for each object property, when
the variable’s type class is defined in external ontologies. For more detail of the
KR-to-MAS conversion, see Table [I]in the Appendix.

Templates to create source code: Once all the classes have been parsed,
the algorithm uses the Apache FreeMarker template engine to translate the
data into Java code. Each class refers to a template determined by information
in the configuration file, facilitating the conditional integration of class-specific
elements. Behaviors, currently coded manually in additional template, are then
integrated into the generated Java source code.

Once the source files have been written ﬂ the Java Compiler receives a path
module containing only the classes and functions of the dependencies essential
to the program. In this way, the MAS agents are compiled and the class names
passed on to Jade.

Main ConstructorAgent ClassBuilder

CreateAllClasses
Ontologies

Create Java classes using the ontology
(classes and properties) and templates

Classes compilation
Delete source files

Create a Constructor Agent
Start the agent

Create the ClassBuilder

Load the ontologies

Create all the classes

Instanciate agents from the
knowledge graph's data

Launch the MAS

Fig. 4. The agent generation process.

Agent instantiation from Knowledge Graph

This step involves executing specific SparQL queries overseen by the construc-
torAgent. The queries provide the flexibility to integrate constraints customized

" The source codes are compiled in a single batch, a strategy designed to anticipate
the potential problems of circular dependencies common when using ontologies.



for the specific context. In this study, limitations are applied to select only a
single valley.

Initially, (1) a query is executed to obtain the complete list of classes present
in the knowledge graph. Then, (2) for each identified class, a new query is for-
mulated to retrieve all related properties, including their cardinality where ap-
plicable. When properties exhibit cardinality, a specialized function is invoked to
significantly reduce the number of queries, ensuring optimal performance. Each
property is then stored in a Java variable of type Map, where the variable name
serves as the key and its type as the value. If the property corresponds to a
class, a third SparQL query is deployed to retrieve all the elements necessary for
agent instantiation. (3) The instantiation phase concludes by launching an agent
of the appropriate class and passing the Map of variables as an argument. This
latter is used at the agent’s startup to initialize its variables using the Reflection
API This pragmatic approach ensures efficient agent initialization, taking into
account context-specific dependencies in the Multi-Agent System (MAS).

4 Results

Note on the results: We ran KEMASS on data from an actual valley in
France. However, releasing the actual data to the public would put the Energy
Grid at risk of a dangerous attack, as such precise data is critical to its func-
tioning. As a consequence, we designed an artificial hydraulic valley (see Fig@
containing 1 reversible plant (which can consume electricity to pump water back
into its reservoir) and 5 hydroelectric plants, among which two are run-of-river.
To complement these plants, we linked them to their respective reservoirs. To add
to the complexity of the representation, one of the reservoirs has two upstream
plants. The results presented in this section are based on the artificial valley, but
demonstrate the same behavior from KEMASS.

N

i Reservoir
o Power plant

o Reversible power plant

— Flow direction O

Fig. 5. Fake valley structure



Simulations record what happens at every moment, such as the amount of
electricity produced or the quantity of water in the reservoirs. These recordings
help us observe how things unfold during the simulation.

An evaluation was conducted on the simulation’s compliance with the pro-
duction schedule, focusing on water flow and produced energy. The graphs (see
Figure @ revealed that the simulation was not perfectly aligned with the pro-
duction schedule due to specific rules considered by our simulator, such as the
required wait times after certain changes. Our field experts clarified that this
observation aligns with the daily routine of the energy company, which often in-
volves manually adjusting production scheduling. This highlights the role of our
simulator, which acts as a digital tool to verify the compliance of the production
schedule with local rules.
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Fig. 6. Verification of a power plant’s flow
regulation compliance with its production
schedule.

Fig. 7. Comparison between daily hydro-
electric production in France among RTE
data, our simulation output, and produc-
tion scheduling.

To validate our approach, we analyzed simulation results, focusing on as-
sessing their resemblance to reality in terms of produced energy. Due to limited
access to actual factory data, a direct comparison at the agent level (Production
Facility) was not feasible. However, partial validation was achieved at the aggre-
gated level by comparing simulated total hydroelectricity production in France,
considering all modeled Production Facilities, with data from RTE’s ECo2mi
The simulation results align with similar trends, despite producing less electricity
than reported by RTE (see Figure [7)). Expert discussions confirmed the realism
of these results, highlighting that the energy company manages only a subset of
power plants (around 16%), while others face unmodeled local constraints in our
simulator, thus maintaining coherence with real-world constraints in KEMASS’s
results.

8 lhttps: / /odre.opendatasoft.com /explore/dataset /eco2mix-national-
tr/information/?disjunctive.nature
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5 Discussions

Based on the results, KEMASS demonstrates significant potential as confirmed
by domain experts and its ability to simulate a trend similar to real-world pro-
duced energy data. However, it is acknowledged to be in the early stages of
development, and its validation has been partial. This section delves into both
current limitations and ongoing enhancements.

Validation: KEMASS involved testing it in three scenarios: using real and syn-
thetic data from a hydropower valley and data from another valley, resulting in
realistic outcomes. However, further validation is essential using a broader range
of real-world data in terms of volume and variety to enhance its reliability and
robustness. Works like [5IT2ITI4] provide relevant approaches in this direction.
To ensure the scalability of KEMASS, we are expanding our current Knowledge
Representations by incorporating additional energy types (e.g., nuclear plants)
and incorporating data from diverse valleys simultaneously. Additionally, we plan
to extend the application of KEMASS to different domains, such as healthcare
or manufacturing, for comprehensive validation.

Internal Agent model: The modeling of agent behaviors is currently expressed
through a template system based on Finite State Machines (FSM). Despite its
utility, this approach lacks the expressiveness inherent in a Turing Machine,
consequently affording agents a less generic foundation for potential evolution,
as articulated by domain experts. To address this limitation, our objective is to
advance a more expressive and user-friendly representation of agent behaviors,
leveraging Knowledge Representation. The adaptability of our system to this
evolutionary trajectory is underpinned by its KR-to-MAS auto-generate system.
[18] provides an interesting alternative approach automatic generation of agent
behavior models that we would benefit integrating in KEMASS.

Time representation: Our application uses absolute time with a fixed timestep,
which may not fit other applications. KEMASS can be modified to fit different
time scales (even at the same time), by simply ensuring: 1) message ordering in
agents and 2) correct time scale representation(s) in Knowledge Representation.
It could also be favorable to adapt the temporality model of [20] in KEMASS.

Full Digital Twin: KEMASS’s main contribution is the combined use of On-
tologies and Knowledge Graphs, allowing for a potential feedback loop between
the virtual and physical systems (as shown in Figure . This could enable KE-
MASS to generate a full Digital Twin of any system. To ensure bidirectional data
flow, KEMASS’s ConstructorAgent(s) would need to update KRs and MAS as
changes occur.



6 Conclusion

This paper introduced KEMASS, a methodology that enables the generation
and execution of a Multi-Agent System directly from a domain representation,
leveraging the synergy of Ontologies and Knowledge Graph.

Our application of KEMASS to an electric production scenario in a hydraulic
valley yielded promising initial findings, demonstrating the system’s ability to
closely replicate the outcomes of the original system and pinpoint disparities in
production scheduling versus actual plant capacity.

However, for comprehensive validation, KEMASS necessitates further test-
ing with additional empirical data. Two ongoing improvements to KEMASS are
underway: (i) refining agent behaviors using a more complex and flexible sys-
tem based on Knowledge Representation, and (ii) establishing synchronization
between MAS updates and KR updates to achieve an authentic Digital Twin of
the modeled system

While initially designed for energy scheduling support, we have meticulously
crafted each process to be as generic as possible. As a result, our system holds
potential for application in diverse domains that can be represented with On-
tologies and Knowledge Graphs, requiring minimal modifications.

Acknowledgement. First part removed for the sake of anonymity.
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Appendix

Table 1. The mapping between XSD types and Java objects.

[ Type XSD[Type Java

anyURI

java.net.URI

Type XSD[Type Java

base64Binary

String

integer

int

boolean

boolean

language

String

byte

byte

long

long

date

java.time.LocalDate

Name

String

dateTime

java.time.LocalDateTime

NCName

String

dateTimeStamp

java.time.LocalDateTime

negativelnteger

long

dayTimeDuration

java.time.Duration

NMTOKEN

String

decimal

double

NMTOKENS

ArrayList<String>

double

double

nonNegativelnteger

long

duration

java.time.Duration

nonPoritivelnteger

long

ENTITIES

ArrayList<String>

normalizedString

String
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